
Tahuti: A Sketch Recognition System for UML Class Diagrams

Tracy Hammond and Randy Davis
AI Lab, MIT

200 Technology Square
Cambridge, MA 02139

hammond, davis@ai.mit.edu

Introduction

Sketching is a natural and integral part of software de-
sign, aiding in the brainstorming of ideas, visualizing
of programm organization, and understanding of re-
quirements. Within UML diagrams(Unified Modeling
Language) (Booch, Rumbaugh, & Jacobson 1998), a de
facto standard for software design, class diagrams play
a central role in describing program structure.

Paper sketches offer users the freedom to sketch as
they would naturally, but because they are static and
uninterpreted, they lack computer editing features, re-
quiring users to completely erase and redraw an object
to move it. We have created and tested Tahuti1, a dual-
view, multi-stroke sketch recognition environment for
class diagrams in UML, combining the sketching free-
dom provided by paper sketches and the ease of editing
available in an interpreted diagram. The system rec-
ognizes objects by their geometrical properties, rather
than requiring the user draw the objects in a pre-defined
manner.

Previous Work

A Wizard of Oz experiment showed that users prefer
a single-stroke sketch-based user interface to a mouse-
and-palette based tool for UML design. (Hse et al. 1999)
Users, though happy with the single-stroke version, re-
quested more sketching flexibility, such as the ability to
draw with multiple strokes.

Ideogramic UMLTM (Damm, Hansen, & Thomsen
2000), a graffiti based diagramming tool, requires users
to draw each single-stroke gesture in the style specified
in the user manual. A consequence of the single stroke
limit is that some of the gestures drawn only loosely
resemble the output glyph. For example, ϕ is used to
indicate an actor, drawn by the system as a stick figure.

Edward Lank et al. built a UML recognition sys-
tem that uses a distance metric (Lank, Thorley, &
Chen 2000), classifying strokes based on the total stroke
length compared to the perimeter of its bounding box.
This algorithm can cause many false positives. (For ex-
ample, the letter M can be detected as a box.)

1Tahuti, also known as Thoth, is the Eqyptian god of
wisdom. He always carried a pen and scrolls upon which he
recorded all things.

System

Our system uses a multi-layer framework for sketch
recognition. At the most basic level, strokes (Figure 1a)
drawn by the user are interpreted as line segments (Fig-
ure 1b) using algorithms for stroke processing devel-
oped in our group (Sezgin, Stahovich, & Davis 2001).
A collection of spatially and temporally close strokes is
chosen, and the line segments contained in the collec-
tion of strokes are then recognized (Figure 1c) as either
an editing command or a viewable object (Figure 1d).
Further description of the recognition stage is in the
Recognition section.

The system currently recognizes seven viewable ob-
jects: a general class, an interface class, an inheritance
association, an aggregation association, a dependency
association, an interface association, or a collection of
unrecognized strokes. An editing command is a collec-
tion of strokes indicating deletion or movement of a
viewable object.

The system is non-modal: users can edit or draw
without having to give any explicit advance notifica-
tion. While sketching, the user can seamlessly switch
between two views: the interpreted view (Figure 2a) or
the drawn view (Figure 2b). Figure 2c shows the re-
sults after moving classes in Figure 2a. The drawn view
is shown in Figure 2d. Editing commands operate iden-
tically in the two views, with the drawn view allowing
users to view and edit their original strokes. When a
class is dragged, the strokes of an attached association
must be stretched, translated, and rotated in order for
it to remain attached and the strokes faithful to those
originally drawn.

Recognition

The third stage in the recognition framework (Fig-
ure 1c) is the recognition of a collection of strokes that
have been segmented into line-segments (Figure 1b).
The system attempts to correctly interpret the strokes
based on several recognition algorithms. We present the
algorithm for arrow recognition here. (See Figure 1c for
the references to A, B, C, D, and E.)

1. Locate the arrow shaft by locating the two points
furthest from each other (points A and B).



Figure 1: Multi-layer framework of recognition

2. Locate the arrow head ends by locating points fur-
thest from arrow shaft on either side (points C and
D).

3. Let point E be the point on line AB that is twice the
distance from B as the intersection point of lines CD
and AB.

4. Classify each of the line segments as part of the arrow
shaft, an arrow head section, or unclassified (AB, BC,
BD, CD, CE, DE, or unclassified) based on the line’s
bounding box, slope, and y-intercept

5. Based on the results of the line-segment classification,
classify the arrow type as dependency, inheritance,
aggregation, or leave the strokes unclassified.

Experiment

In a preliminary study, four subjects were asked to draw
and edit a UML diagram in four different ways: A) using
a paint program, B) using Rational RoseTMC) using
Tahuti in interpreted view D) using Tahuti in drawn
view. Subjects were aided in the use of Rational Rose if
they were unfamiliar with it, but little instruction was
given otherwise so that subjects would draw as they do
naturally.

The subjects were asked to rank the four methods
on a continuous scale from zero to five (with zero being
the hardest and five being the easiest) both for ease of
drawing and for ease of editing. The average scores were
as follows:

• Drawing A: 2.25, B: 1.75, C: 4.375, D: 3.1
• Editing A: 1.65, B: 1.925, C: 4.825, D: 2.6

The results display that subjects greatly preferred
the interpreted sketch interface of Tahuti. They appre-
ciated having the freedom to draw as they would on
paper along with the editing intelligence of a computer
application. Subjects said that editing was difficult in
the paint program because of the large amount of re-
sketching required for class movement. Subjects com-
plained that Rational Rose was extremely nonintuitive
and that they had difficulty performing the commands
they wished to perform.

Conclusion

We have created and tested Tahuti, a dual-view, multi-
stroke sketch recognition environment for class dia-
grams in UML, combining the sketching freedom pro-

(a) (b)

(c) (d)

Figure 2: (a) Interpreted UML class diagram, (b) Drawn
view of (a), (c) Diagram of (a) with the classes moved,
(d) Drawn view of (c). (The text shown in the figures
is entered via the keyboard.)

vided by paper sketches and the ease of editing avail-
able in an interpreted diagram. The system recognizes
objects by their geometrical properties, rather than
requiring that the user draw the objects in a pre-
defined manner. The experiments showed that users
preferred Tahuti to a paint program and to Rational
RoseTMbecause it combined the ease of drawing found
in a paint program with the ease of editing available in
a computer application.

Future system enhancements include the ability to
recognize multiplicity relationships and modification of
recognized objects, (e.g., changing a dependency as-
sociation into an inheritance association by adding a
stroke). We also would like to compare Tahuti with
other UML tools.

References
Booch, G.; Rumbaugh, J.; and Jacobson, I. 1998. The
Unified Modeling Language User Guide. Reading, MA:
Addison-Wesley.

Damm, C. H.; Hansen, K. M.; and Thomsen, M. 2000.
Tool support for cooperative object-oriented design: Ges-
ture based modeling on an electronic whiteboard. In CHI
2000. CHI.

Hse, H.; Shilman, M.; Newton, A. R.; and Landay, J.
1999. Sketch-based user interfaces for collaborative object-
oriented modeling. Berkley CS260 Class Project.

Lank, E.; Thorley, J. S.; and Chen, S. J.-S. 2000. An inter-
active system for recognizing hand drawn UML diagrams.
In Proceedings for CASCON 2000.

Sezgin, T. M.; Stahovich, T.; and Davis, R. 2001. Sketch
based interfaces: Early processing for sketch understand-
ing. In To appear in The Proceedings of 2001 Perceptive
User Interfaces Workshop (PUI’01).


