
MIT Student Oxygen Workshop, July 2001 1

Natural Sketch Recognition in UML Class Diagrams

Tracy Hammond HAMMOND@AI.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

1. Introduction

Sketching is a natural and integral part of software de-
sign. Software developers use sketching to aid in the brain-
storming of ideas, visualizing programming organization,
and understanding of requirements. Unfortunately, when it
comes to coding the system, the drawings are left behind.
Natural sketch recognition offers a way to bridge this gap.

I created a natural sketch recognition environment for UML
(Unified Modeling Language) (Alhir, 1998). My system
differs from graffiti-based approaches to this task, in that it
recognizes objects by how they look, not by how they are
drawn. My goal is a system where the user can sketch UML
diagrams on a tablet or whiteboard in the same way they
would on paper, but the diagrams would then be recognized
by the computer to provide clean interpreted diagrams, stub
code, and enhanced editing ability.

I selected UML diagrams because they are a de facto stan-
dard for depicting software applications. Within UML I
focused on class diagrams, first because of their central
role in describing program structure, and second because
many of the symbols used in class diagrams are quite sim-
ilar. Hence they offer an interesting challenge for sketch
recognition.

2. A Class Diagram Recognition System

2.1 Class Diagrams within UML

Class diagrams describe the static structure of a system,
how it is structured rather than how it behaves (Alhir,
1998).

Class diagrams consist of (i) general classes, (ii) interface
classes, and (iii) associations that can exist between two
classes. In UML, a general class is represented by a rect-
angle, while an interface class is represented by a circle or
rounded rectangle.

There are three types of associations: (i) A dependency as-
sociation exists if one class calls a method from another
class, including the constructor. The dependency relation-
ship is represented by an arrow with an open head. In Fig-
ure 1, the Game class is dependent on the Graphics class.

(ii) A generalization or inheritance association exists if one
class is a kind of or extension of another class. The inher-
itance relationship is represented by an arrow with a trian-
gular head. In Figure 1, the Hand class is inherited from
the CardDeck class. (iii) An aggregation association exists
if one class is part of another. The aggregation relation-
ship is represented by an arrow with a diamond head. In
Figure 1, the Card class is part of the CardDeck class.

2.2 Recognition of Classes and Associations

Gestures – collections of strokes – are recognized as ei-
ther creation, deletion, or movement of a class diagram
glyph. The system can recognize glyphs indicating general
classes, interface classes, dependency associations, inheri-
tance associations, and aggregation associations. A stroke
may also be left as unclassified. In Figure 1, the left screen
displays the strokes drawn to create the interpreted UML
diagram in the right screen.

Recognition is based on a combination of temporal, local-
ity, and contextual information. Gestures to be recognized
are restricted to those temporally close as people tend to
sketch complete objects before sketching the next. Strokes
are reduced to line segments. Angles and distances be-
tween segments are examined to help determine the most
appropriate interpretation. Contextual information is used
in a variety of ways. To give one example, a line drawn
from one class to another may be recognized as an associ-
ation but a free standing line may be left unclassified.

A general class can be drawn with one to four strokes. A
collection of strokes is classifiable as a general class if the
majority of the points fall between the bounding box of the
strokes and a slightly smaller internal bounding box. A
stroke is classifiable as an interface class if the least squares
error is small (Sezgin, 2001). 1

Arrows can be drawn as complete arrows or as a line con-
necting one class to another. To recognize an arrow, the
recognizer first attempts to locate the head and tail of the
arrow by finding the points furthest from each other (i.e., it

1The least squares error is the sum of the squares of the dis-
tance from each drawn point to the ellipse defined by the bounding
box of the sketched points.



Figure 1. The left screen displays the hand drawn UML class dia-
gram. The right screen displays the recognized output of the hand
drawn UML class diagram. Enlarged figures are shown in the
Appendix.

assumes the head or the tail to be a stroke endpoint). The
arrow is divided into line segments. The head is defined
to be the stoke endpoint closest to the other line segments.
The algorithm then locates the arrowhead’s side points by
finding the points furthest from the head-tail line, and ly-
ing on either side of this line. The line segments are then
examined to determine where they fall to determine the as-
sociation type.

2.3 Recognition of Editing Commands

The system is non-modal: users can edit or draw with-
out having to give any explicit advance notification. One
editing action is moving classes and associations on the
screen. The system understands a gesture as a move com-
mand rather than a drawing command based on the user’s
sketching behavior: Users tend to click and hover over a
class when moving it. For example, the system interprets
a hover of larger than .5 second as a move command. The
move command is signified to the user by a cursor changing
to a gripping hand with which the user can move the class.
The user can delete a class or association by scribbling it
out.

3. Previous Work

Work at Berkeley by Hse et al. (1999) has shown that
users prefer a single-stroke sketch-based user interface to
a mouse-and-palette based tool for UML design. Hse per-
formed a Wizard of Oz experiment comparing the two de-
sign methods. During the experiment, users requested more
sketching flexibility, such as the ability to draw with multi-
ple strokes.

One company – Ideogramic (Damm et al., 2000) – has
developed a gesture based diagramming tool, Ideogramic
UMLTM, which allows users to sketch UML diagrams. The
tool is based on a graffiti-like implementation and requires
users to draw each gesture in one stroke, and in the direc-
tion and style as specified by the user manual. One conse-
quence of the stroke limit is that some of the gestures drawn
only loosely resemble the output glyph. For example, ϕ is

the stroke used to indicate an actor, drawn by the system as
a stick figure.

Edward Lank and others at Queen’s University have de-
veloped a system to recognize sketches of UML diagrams
using a distance metric (Lank et al., 2000). Each glyph
(square, circle, or line) is classified not based on what the
glyph looks like, but rather the total stroke length com-
pared to the perimeter of its bounding box (e.g., if the
stroke length is approximately equal to the perimeter of the
bounding box, it is classified as a square).

4. Conclusion

I have described a system to recognize UML class diagrams
sketches. Users are allowed to draw as they would nat-
urally, without any graffiti-like restrictions. Sketches are
recognized based on what the drawn object looks like rather
than how it is drawn.

Future system enhancements include allowing the user to
sketch more detail about a program. For instance, I plan
to add the ability to recognize multiplicity relationships by
noting properties sketched around associations.

My future plans are to connect the system to a CASE tool
such as Rational Rose to enable the programmer to use the
functionality provided by a CASE tool.

Acknowledgements

The author would like to thank Dr. Randall Davis for his
feedback and support throughout the research. The au-
thor would also like to thank Louis-Philippe Morency, Dr.
Raghavan Parthasarthy, Dr. Jan Hammond, and John Zei-
gler for their helpful comments and suggestions.

References

Alhir, S. S. (1998). UML in a nutshell: a desktop quick
reference. Cambrigde, MA: O’Reilly & Associates, Inc.

Damm, C. H., Hansen, K. M., & Thomsen, M. (2000). Tool
support for cooperative object-oriented design: Gesture
based modeling on an electronic whiteboard. CHI 2000.

Hse, H., Shilman, M., Newton, A. R., & Landay, J. (1999).
Sketch-based user interfaces for collaborative object-
oriented modeling. Berkley CS260 Class Project.

Lank, E., Thorley, J. S., & Chen, S. J.-S. (2000). An in-
teractive system for recognizing hand drawn UML dia-
grams. Proceedings for CASCON 2000.

Sezgin, M. (2001). Early processing in sketch understand-
ing. Submitted to Proceedings of the International Joint
Conference on AI.



Natural Sketch Recognition in UML Class Diagrams

Tracy Hammond HAMMOND@AI.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

Appendix

Figure 2. Hand drawn UML class diagram.

Figure 3. Recognized output of UML class diagram in Figure 2.
Note that the letters shown are typed in through a pop-up screen
and not recognized.


