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ABSTRACT 
 

We are interested in enabling a generic sketch recognition system that would allow more 
natural interaction with design tools in various domains. Instead of writing recognizer 
code for each new domain, new shapes should be added by describing them in a shape 
description language. While writing such descriptions is easier than writing code, it is 
still not a particularly easy or natural mode of interaction. The most natural way to teach 
new symbols to the system would be simply drawing them. This thesis presents a 
learning system that takes in a drawn symbol and produces a textual description of it 
appropriate for using in a recognition engine. The main challenge is to decide which 
properties of the example are relevant. People cope with this task in part, we believe, 
through innate perceptual biases. We use studies of human perception of geometry to 
understand these biases and use them to help select the relevant properties from a single 
example. The main generalization power of the system is derived from two sources: 1) a 
qualitative description vocabulary that reflects properties that people pay attention to and 
2) mechanisms, derived from the observations about perception, that adjust the relative 
importance of different properties based on the overall configuration of the geometric 
primitives in the example. Using this approach the system is able to adequately describe 
complex symbols by identifying a small number of relevant properties. 
 
Thesis supervisor: Randall Davis 
Title: Professor of Electrical Engineering and Computer Science 
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Chapter 1 Introduction 

1.1 Research context: multi-domain sketch understanding 
Informal sketches are often an important part of early stage design in many 

domains [Ullman, 1990]. Sketching helps people explore new ideas, brainstorm designs 
and reduces cognitive load of the design process. Many designers still use pen and paper 
for trying out ideas, since CAD tools available to date do not accept free-hand input. 
These tools require precise specification of all parameters and well-formed designs. Only 
when the design matures, can it be entered using a CAD tool for more detailed analysis 
and documentation. Often the valuable information about the design intent expressed in 
the paper sketches never gets documented. The designers also lose the benefit that 
computers could potentially provide even at the early stages of design. Useful analysis, 
qualitative simulations, or exploration of alternatives can be done even on a rough sketch, 
if only the computer could recognize the objects sketched. 

We feel that interaction with design tools could be made more natural if they not 
only provided powerful analysis of precise designs, but also recognized sketched input at 
the early design stages. 

The work reported here is part of the effort by the Design Rationale Group (DRG) 
that has developed sketch understanding systems for several design domains including 
mechanical engineering and software [Alvarado and Davis, 2001], [Hammond and Davis, 
2002]. Those systems used hand-coded recognizers for the domain shapes, which made 
creating a system for each new domain or adding more shapes very tedious and time-
consuming. 

The DRG is currently interested in enabling generic sketch recognition [Alvarado 
and Davis, 2002], and is building a system that would reuse the recognition engine for 
multiple domains. The intent is that a new domain can be added simply by providing 
descriptions of the domain symbols using a shape description language. Each symbol is 
described in terms of geometric primitives (lines, arcs, ovals, etc.) and constraints 
between them (connects, parallel, above, horizontal, shorter, etc.) [Hammond and Davis, 
2003]. Symbolic, easily readable textual descriptions make shape representation explicit 
and allow any user to define new symbols.  

While being able to type new shape descriptions is clearly easier than writing code, 
describing shapes textually is itself not a particularly natural mode of interaction. This 
thesis describes a system we have developed that is capable of learning a symbolic 
description of a shape from the user’s drawing. The system provides a way to 
automatically produce the textual descriptions needed by the generic recognition engine 
from examples provided by the designer of the domain. These descriptions can be further 
checked or edited by the designer, if required. Figure 1.1 presents the overall view of the 
generic sketch understanding system and shows the role of our work. 
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Figure 1.1 Generic sketch understanding system 

1.2 The learning problem 
Like handwritten characters, symbols in commonly used graphical languages can 

be drawn with some variation. For instance, all of the drawings in Figure 1.2 are 
examples of an inverter symbol in electric circuits: 

 

 
Figure 1.2 Variations of the inverter symbol 

Despite the variations, there are important properties that are going to be present in 
all the examples, such as the lines forming the triangle or the relative size of the circle 
and the triangle, and unimportant properties that can be varied, such as the relative sizes 
of the sides of the triangle. We are faced with a classic problem in learning from 
examples: how can we generalize, i.e., how can we identify which subset of properties is 
relevant? 

One common approach to this is to ask the user to draw the symbol numerous times 
(e.g., hundreds of times for neural nets), in the belief that the inessential elements will 
“average out.” We find this undesirable for our task of teaching new symbols to the 
system. The system would be more natural if one could interact with it as if 
communicating with another person. And typically, seeing one example of each of the 
symbols in the domain is sufficient for people to learn them. Furthermore, even if people 
see only one symbol without knowing the other symbols in the domain, they are able to 
extract enough information to often make a correct decision on whether some new 
drawing should be recognized as the symbol or not. Aiming at achieving this capability, 
in our work we have focused on the problem of learning as much as possible from a 
single example. 

1.3 Motivating example 
Consider how people learn new symbols such as the one in Figure 1.3. 
 
 
 
 
Figure 1.3 Symbol for mechanized infantry used in military planning diagrams 

learning 
system 

recognition 
system 

recognized objects

shape 
examples textual 

description 

input sketch 
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Most people would describe this symbol as a rectangle with diagonals, with an oval 
in the center and a vertical line adjacent to the oval. A single example is often enough to 
understand the structure of the symbol. People are likely to recognize it again, even if 
drawn with some variations (Figure 1.4). The goal of the learning system is to do the 
same, producing a description of the symbol that is adequate for later recognition. 

 
  
 

 
 
 
Figure 1.4 Perceptually similar symbols 

Both instances of the mechanized infantry symbol in Figure 1.4 differ from the 
original example (e.g. in the aspect ratio of the rectangle, the orientations of the slanted 
lines, and the relative size of the oval). Yet most people would recognize these instances. 
They do not pay attention to the exact values of the varied properties in the original 
example from Figure 1.3. 

To understand what properties people attend to we have turned to studies of human 
perception and memory of geometric shapes. We looked at Goldmeier’s studies of 
similarity [Goldmeier, 1972], [Goldmeier, 1982], Arnheim’s work on art and visual 
perception [Arnheim, 1974], and the perceptual grouping principles identified by the 
gestalt psychologists [Wertheimer, 1923]. Inspired by the phenomena described in these 
bodies of work and following our own introspection, we have developed a number of 
heuristics for ranking different geometric properties on perceptual saliency. We show that 
they are an important step towards matching people’s ability to learn from one example. 

Our approach clearly depends on the assumption that the drawings in Figure 1.5 are 
in fact to be interpreted as the same symbol. 

  
 

 
 
 
Figure 1.5 Perceptually similar symbols 

We feel that it is reasonable to assume that the above figures should be recognized 
as the same symbol, because similarity and perceptual saliency play an important role in 
the design of graphical languages. If two symbols that are perceptually similar – i.e. 
differ on a property that people don’t pay attention to – it would be unwise to use them to 
mean different things. They would be easily confused and the difference would be hard to 
remember. We thus suggest that a well-designed graphical language is unlikely to contain 
such ambiguous symbols. 
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1.4 Domain-specific knowledge 
Geometric saliency is not the only source of people’s capacity to learn symbols. In 

some cases we also use domain-specific information. Consider the symbol of an AND-
gate in Figure 1.6. 

 
 
 
 
 
 
Figure 1.6 AND-gate symbol 

When students first learn this symbol in a logic design class they know that the 
lines labeled l1 and l2 do not have to be the same length because they represent wires. 
Domain-specific knowledge and graphical conventions sometimes help identify which 
properties are not important, even if these properties are perceptually salient. Our system 
currently does not incorporate such knowledge. We feel that relying only on geometric 
information is still a step in the right direction. There are domains, like military diagrams, 
where most of the symbols are abstract and do not resemble the objects they represent 
(like the military symbol in Figure 1.3). Most people would still be able to learn these 
symbols from one example, using only the geometric clues. In the future, the system 
could be extended to incorporate domain information or common conventions.  

1.5 Measure of success 
Ideally, the measure of success for the system is whether the descriptions produced 

are adequate for recognition. By adequate we mean that the description would cause the 
recognition engine to admit all and only the instances that the user intended to be 
recognized when teaching the system an example of the symbol. As the system uses only 
geometric information, it is bound to make domain-related errors in some cases. For 
example, it would conclude from Figure 1.6 that lines l1 and l2 have to be the same 
length. Hence, we prefer to evaluate the system’s descriptions by comparing them to the 
geometric properties a person shown the same symbol would pay attention to, without 
taking into account the knowledge of the domain or of how the symbol is to be used. 

One way to test this is to show people a symbol from an unfamiliar domain and to 
ask whether different variations of it should be recognized as the original symbol. The 
variations people accept should match the description produced by the system, and the 
variations they reject – should not. We have conducted such a study with several military 
planning symbols. On examples with high agreement between the subjects, the system 
achieved 83% accuracy (i.e. it agreed with the majority answer 83% of the time). We 
describe the study in more detail in Chapter 6. 

1.6 Example and approach 
This section illustrates the system’s performance on a simple example. Suppose the 

user would like to teach the system the symbol in Figure 1.7. 
 

l1 

l2 
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Figure 1.7 Military planning symbol 

Our system expects the user to draw carefully – i.e. the lines that the user intends to 
be straight, perfectly vertical (or horizontal), or well connected, should be drawn that way 
and only a small amount of noise is allowed. We think this is a reasonable requirement 
for the teaching phase, since the symbol has to be drawn only once. 

As the user draws the symbol (with a mouse or pen-based input), each individual 
stroke is segmented into simple geometric primitives – lines and ovals – using pen-speed 
and stroke curvature data [Sezgin, 2001]. After the drawing is completed the user presses 
“Go” to generate the description. 

 

   
 
 
 

 
 
 
 
Figure 1.8 a) Single stroke. b) Segmentation into geometric primitives. c) Completed 
symbol 

The system straightens out the lines that are almost horizontal or vertical and 
connects line endpoints if their separation is within a small threshold. The straightened 
and labeled primitives are shown in Figure 1.9: 

 

a) b) 

c) 
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Figure 1.9 Straightened and labeled primitives  

Next, the system finds all pairwise constraints that hold in the drawing. The 
constraints do not have to hold exactly: the system includes small thresholds on distances 
and angles to account for noise. For example, even if there is a small horizontal offset 
between the centers of lines l2 and l3, the system will consider these centers to be on the 
same vertical line. 

There were 96 constraints found for the symbol above (see Appendix A). The 
challenge is to pick only the relevant subset of these constraints for the description. For 
example, both of the constraints “same-length (l4 l1)” and “same-length (l4 l5)” hold in 
the drawing. However, people would typically include only the second of those in their 
description of the symbol. 

The system uses several mechanisms to generalize the description (i.e. filter out 
irrelevant constraints), inspired by the results of psychological studies and our 
introspective analysis. We give a brief summary of these mechanisms and provide more 
details in Chapters 3 and 5: 

 
• Qualitative vocabulary: Initial generalization is achieved by using qualitative 

terms to describe constraints and properties. For example, the orientation of a 
line is described as “horizontal”, “vertical”, “positive-slope”, or “negative-
slope.” 

• Different default relevance scores: Different types of constraints have been 
shown by psychologists to have different perceptual importance. For instance, 
the structural composition of the primitives in the symbol is more important 
than their individual properties. In recognition of this, for example, the system 
assigns higher relevance scores to “connects” constraints than “longer” 
constraints.  

• Score adjustment based on global properties: The system increases or 
decreases the relevance score of each constraint using three heuristics that 
analyze the global properties of the symbol: 
1. Obstruction: This heuristic relies on the assumption that it is harder to pay 

attention to constraints between two primitives if several other primitives 
separate them (create obstruction). For example, in Figure 1.9 there are 
several lines between lines l1 and l7. Hence, the relevance of constraints 
like “longer (l1 l7)” will be decreased.  

2. Tension lines: People pay attention to horizontal and vertical alignments of 
primitives. We call such alignments tension lines. We increase relevance of 
constraints breaking the alignment, if violated. For example, in Figure 1.9 
line l3 is centered above line l2. Their endpoints are aligned vertically. The 
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relevance of “above-centered” and “same-length” constraints would be 
increased even if these primitives were separated by several others. 

3. Grouping: People tend to group primitives together and see them as a 
whole. The system currently supports grouping by connectedness and 
familiarity of shape. When people see several primitives as one whole 
object, they pay less attention to individual interactions of primitives that 
form different objects. The system decreases the relevance of a constraint 
on a pair of primitives if they belong to different groups. In Figure 1.9 lines 
l6, l7, and l8, are recognized as the previously learned symbol “right 
arrow”, so the relevance of constraints like “longer l6 l4” is decreased. 

 
The system uses these mechanisms to calculate a relevance score between 0 and 1 

for each constraint. We picked the middle of the range to be the cut-off threshold. Only 
constraints that end up with a score above 0.5 are considered relevant enough to remain 
in the final description of the symbol. Examine the description shown below produced for 
the symbol in Figure 1.9: 

 The GROUP HIERARCHY part of the description represents how the symbol was 
broken down into groups of elements – perceptual grouping. Each group is what the 
system interprets as a perceptual unity – a separate object within the symbol – either 
because all of the elements are connected, or because they form a symbol that the system 
has been taught before (the system has mechanism for recognizing such symbols). In this 
case, the whole symbol (Group g1) is a connected component which in turn consists of 
two groups: the “right arrow” (Group g2), which is a previously learned symbol, and a 
connected group formed by the rest of the elements (Group g3). This grouping influences 
the relevance score of various constraints according to the grouping heuristic mentioned 
above. 

The CONSTRAINTS part shows all the constraints on the groups and individual 
elements of the symbol that the system considered relevant. Only half of the original 
constraints got a relevance score above the filtering threshold and remained in the 
description. Note that the constraints pertaining to the arrow like “horizontal: l6” are not 
included, since they are already specified in the description of the previously learned 
“right arrow” symbol. 

 

 
 
Figure 1.10 Military planning symbol 
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GROUP HIERARCHY: 
Group g1 connected-component: l5 l4 l3 l1 l2 l6 l8 l7 
   Group g2 symbol - right arrow: l8 l7 l6 
   Group g3 other: l5 l4 l3 l1 l2 
 
CONSTRAINTS: 
elongated: (g3) 
connects: (l5.p2 l6.p1) (l4.p2 l5.p2) (l4.p2 l6.p1) (l3.p2 
l4.p1) (l2.p2 l5.p1) (l1.p1 l3.p1) (l1.p2 l2.p1) 
horizontal: (l3) (l2) 
vertical: (l1) 

 
pos-slope: (l5) 
neg-slope: (l4) 
right: (l5 l1) (l4 l1) 
upper-right: (l5 l2) (l4 l1) (l4 l2) (l3 l1) 
upper-left: (l3 l4) (l3 l5) (l1 l2) 
above-centered: (l4 l5) (l3 l2) 
same-length: (l4 l5) (l2 l3) 
longer: (l3 l1) (l3 l4) (l2 l1) (l2 l5) 

 
This description reasonably captures the salient properties of the symbol. It would 

cause the recognition engine to admit all the variations of the symbol in Figure 1.11 and 
reject the variations in Figure 1.12. 

 
 
 
 
 
 
 
Figure 1.11 Variations that would fit the description 

 
 
 
 
 
 
 
 
 
Figure 1.12 Variations that would contradict the description 

We have also started exploring ways of displaying the system’s conclusions 
graphically, in order to enable the user to check the result without having to read the 
textual description. The user selects line l3 and the system shows all constraints related to 
this line (Figure 1.13). Short double dashes indicate the “same-length (l3 l2)” constraint 
and the dashed line indicates relative position and center alignment – “above-centered (l3 
l2)”. 
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Figure 1.13 Graphical display of the constraints that the system considers relevant. 

1.7 Scope and limitations 
There are a number of limitations in the current sytem: 
 

• The system currently supports only symbols composed of lines and ovals. It can 
describe symbols that can be expressed in terms of qualitative constraints, like “same-
length” vs. “longer”. So for example, it would not be able to learn a constraint like 
“three times longer.” The assumption built into the system is that the exact length 
ratio is not likely to be the important distinguishing feature between two symbols in a 
typical graphical language, since a difference between two length ratios would be 
perceptually hard to notice for people – unless, of course, this difference is too large. 
 

• Our qualitative vocabulary lumps several property values into one term and does not 
capture that some values may be “too much.” The system would describe the relative 
size of the circles in Figure 1.14a as “larger o1 o2”. The drawing in Figure 1.14b 
would fit the description, even though most people would probably say that the 
difference between the sizes is too large for Figure 1.14b to be recognized as an 
instance of the symbol in Figure 1.14a. 

 
 
 
 
 
 
 
 
Figure 1.14 a) Original symbol. b) Variation that fits the description of the original 
symbol 

A potential solution would be to add a “much larger” constraint. However, it may not 
be easy to define a good boundary between “larger” and “much larger.” 
 

• The system uses only positive constraints, i.e. it specifies only which constraints 
should hold in the symbol. It does not include “must not” constraints. So it would not 
be able to describe, for example, a closed shape (say, a four-sided polygon) that 
should not have self-intersections. 

a) b) 
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• Currently the system uses only pairwise constraints. So certain constraints like 
interval equality or alignment of multiple elements are not represented, which makes 
it impossible to properly describe configurations like the one in Figure 1.15: 

 
 
 

 
 
 
 
Figure 1.15 A symbol requiring alignment and interval equality constraints 

All the limitations mentioned above refer to the system’s inability to sufficiently 
constrain the description of certain symbols. This may create a problem if symbols in the 
domain are distinguished based only on such properties – for example, if a normal 
rectangle and a very long thin rectangle are intended to be two different symbols. The 
system would have the same description for both. 

Another set of limitations is related to symbols that the system is bound to 
overconstrain. Symbols that can have an arbitrary number of certain primitives (Figure 
1.16) fall into this category. The system always specifies exactly the number of 
primitives that a symbol should have. Hence, springs, resistors, inductors, dashed lines, 
etc. would be impossible to describe properly. We address potential approaches to this 
problem in Chapter 7. 

 
 
 
 
 
Figure 1.16 Symbols with an arbitrary number of primitives 

1.8 Structure of the thesis 
Chapter 2 discusses related work on sketching and learning shape descriptions. In 

Chapter 3 we describe the findings in the perceptual literature that served as inspiration 
for our approach. Chapter 4 illustrates the performance of the system on several examples 
and shows how each of the generalization mechanisms is applied. We discuss the details 
of the implementation in Chapter 5, followed by user study analysis in Chapter 6 and 
ideas for future work in Chapter 7. 
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Chapter 2 Related Work 
There has been a substantial amount of work on making human-computer 

interaction more natural by adding interfaces that support free-hand sketching. Work on 
sketching systems to date falls into two categories: systems that use sketching interfaces 
without attempting to interpret what the input means and systems that attempt to 
recognize the sketched objects. 

The work in the first category includes systems that transform the user’s free-hand 
input to beautify it [Arvo and Novins, 2000], [Igarashi et al., 1997], systems that support 
intelligent editing of sketches by allowing perceptually based selection of strokes [LeCun 
et al, 1995], and systems that allow capturing sketches for documenting designs or 
knowledge but minimize recognition of shapes, so that the user is free to draw anything 
[Lin et al, 2002], [Forbus and Usher, 2002]. 

The systems that are more relevant for our work are the ones that perform 
recognition of the sketched input. Here we mainly discuss two aspects of these systems: 

 
• Representation: We are interested in how the recognized symbols are 

represented, what features are recorded, and what the descriptive ability of the 
chosen representation is. For our system we have chosen a symbolic, qualitative 
representation that corresponds to properties that people typically find 
perceptually relevant. It is an important source of generalization, because it 
throws out information on properties that we expect to vary in different 
instances of the symbol we want to learn. We examine differences and 
similarities to this approach for the reviewed work. 
 

• Learning: We look at how the recognizers for the symbols are acquired, i.e. 
whether they are specified by hand or can be obtained automatically through 
training, and if so, how many training examples are required. In our system we 
learn symbols from a single example, while most of the systems reviewed here 
need several examples. Yet, some systems are able to learn from much fewer 
examples than others. So it is important to look at the sources of power for the 
generalization mechanisms. We believe that in our system, apart from the 
qualitative vocabulary, one source is the prior knowledge about human 
perception of geometry. While other systems rely on looking at several 
examples to “average out” the properties in the symbol that are irrelevant, our 
system obtains that information from the relevance ranking of the properties 
based on studies of human perception.  

 
One of the early sketching systems that several other approaches are based on is 

Rubine’s GRANDMA [Rubine, 1991]. Rubine describes a trainable recognizer for single-
stroke gestures. Gestures are represented by global features, like length and angle of the 
bounding box diagonal, the total angle traversed, the sum of the angles at each mouse 
point, the duration of the gesture, the initial angle of the gesture, etc. The gestures are 
classified according to a linear function of the features, where the weights are determined 
during training on multiple examples (typically around 50). 
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Apart from handling only single strokes, the limitation of this approach is that it 
uses only aggregate properties of the stroke. The representation does not explicitly 
capture the detail that may help disambiguate between two gestures with very similar 
aggregate properties. The representation used in our system makes explicit the properties 
and constraints on parts of the symbol (like individual lines or ovals). 

[Caetano et al., 2002] presents JavaSketchIt – a system that can recognize sketched 
UI components (buttons, scroll-bars, check-boxes, etc.) and automatically create Java 
code for them. To recognize UI components, JavaSketchIt uses CALI, a shape recognizer 
described in [Fonseca et al., 2002]. CALI can recognize simple shapes: squares, 
rectangles, diamonds, triangles, arrows, crosses, and simple single stroke gestures. 

CALI is similar to Rubine’s recognizer in that it also uses aggregate properties to 
represent shapes. Shapes are specified in terms of features of special polygons: enclosing 
rectangle, convex hull, largest inscribed triangle, and largest inscribed quadrilateral. 
Using these global features provides certain flexibility. For example, CALI recognizes 
multi-stoke shapes. Also, shapes can be drawn with overtraced and dashed lines. 
However, as mentioned above, the recognizer handles only simple shapes. For symbols 
with more internal detail, like military diagram symbols (see Figure 1.3), these features 
would be clearly insufficient. Moreover, the number of training examples used to achieve 
a sufficiently high level of recognition was over 50 for each shape. 

Landay and Meyers also describe a sketching tool for designing user interfaces – 
SILK [Landay and Meyers, 2001]. SILK recognizes sketched interface widgets composed 
of primitive components – rectangle, squiggly line, straight line, and ellipse. The 
recognizers for primitive components are based on Rubine’s algorithm. A similarity to 
our system is that SILK uses symbolic spatial relationships (like containment, nearness, 
and vertical or horizontal sequence) between the primitive components to determine the 
interface widget that the designer is trying to draw. For example, a scroll-bar is a long 
skinny rectangle with a box contained in it. However, there is no mechanism for learning 
these relationships. SILK creators specified the relationships for each UI widget 
manually. Only the recognizers for the primitive components can be trained (using 
Rubine’s algorithm). Our system, on the other hand, provides mechanisms to learn such 
relationships from an example. Notice also that the set of spatial relationships in SILK is 
limited by what is needed for the application at hand. It may be insufficient for describing 
more complicated symbols in general (for example, the set does not include parallelism 
or same-length properties). 

The Electronic Cocktail Napkin (which is the recognition core of a later system for 
sketching in conceptual design [Gross and Do, 2000]) uses a two level representation for 
a symbol similar to that of SILK: low level glyphs and high level combinations of glyphs 
described by symbolic spatial relationships between them [Gross et al., 1996]. A glyph is 
a single-stroke or multi-stroke symbol represented by a transition sequence of the pen 
through the cells of a three-by-three grid. For each glyph the aggregate properties, like 
allowed number of strokes, number of corners, aspect ratio, and size, are recorded. More 
complicated symbols can be composed from several glyphs, by specifying spatial 
relationships between the glyphs. Spatial relationships include adjacency, containment, 
and overlap of glyphs and intersection, parallelism, and tee conditions for line segments. 

This representation allows describing a larger variety of symbols than SILK and 
CALI. The Electronic Cocktail Napkin also lets the user to specify new glyphs and glyph 
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combinations. Yet, when learning these combinations, the system records all the spatial 
relationships that it finds for the combination and the user has to manually remove the 
ones that are unimportant. There is again no automatic generalization mechanism.  

Shilman et al. treat symbol recognition as visual language parsing [Shilman et al., 
2002]. The visual language consists of the declarative grammar that specifies ranges of 
allowed values for a set of constraints between elements (distance, angle, width and 
height ratios, and overlap). Training on many examples is used to turn these ranges into 
distributions, so that the maximum likelihood parse tree can be calculated during 
recognition. Again, the visual grammar has to be written by hand, i.e. the designer has to 
determine relationships that are significant for the statistical model. Only the distributions 
are obtained through training. 

This system, as well as SILK and the Electronic Cocktail Napkin, deal with the 
potential variability of symbol instances partially through using a small symbolic 
vocabulary of spatial constraints. However, none of the systems provides capabilities for 
learning which of these spatial constraints are important – the constraints have to be 
provided by the user or the designer of the system. 

Ferguson and Forbus describe GeoRep – a spatial reasoning engine that generates 
qualitative spatial descriptions from perfect line drawings [Feguson and Forbus, 1999]. It 
has been applied for symmetry detection tasks, critiquing simple diagrams of physical 
phenomena, and spatial reasoning about military course of action diagrams. The paper 
mentions future applications of GeoRep to sketching, once it is modified to process free-
hand input rather than exact line drawings. Apart from using a qualitative vocabulary of 
spatial constraints, GeoRep also includes generalization capabilities. 

The part of GeoRep that is relevant to our work is the Low-Level Relational 
Describer (LLRD). LLRD produces qualitative spatial descriptions of the input in terms 
of geometric primitives and relations between them. It handles lines, circular arcs, circles, 
ellipses, splines, and text strings. It records position constraints like above, beside, etc.; 
orientation constraints, like horizontal, vertical; connection relations, parallel lines, 
interval relations, presence of polygons, and boundary description. 

Similar to our system, GeoRep attempts to limit the number of recorded constraints 
between different primitive elements, because not all of them are visually important.  The 
single mechanism it uses for this purpose is proximity. LLRD only looks at constraints 
between proximal elements. Proximity is calculated as a function of size, shape type, and 
distance between elements. 

Like LLRD, our system prefers local interactions. Locality, however, is defined not 
through distance but through the obstruction mechanism. The primitives are considered 
“close” if there are no other primitives between them, regardless of the actual distance. 0 
explains how we chose such definition based on observations about human perception. 

In addition, our system adjusts the relevance of different properties of the symbol 
based on alignments (tension lines) and grouping. We show that even if two primitives 
are far away from each other, the constraints on them may still be relevant for the 
description of the symbol, and these mechanisms help detect this. 

Connell’s work on learning shape descriptions for images of physical objects 
(airplanes, tools, household items, etc.) contains several ideas that are also reflected in 
our work [Connell, 1985]. The goal of their system is to generalize a description for a 
class of objects (e.g., “airplane”) from images for several objects in the class (e.g. 
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individual types of airplanes) in order to be able to recognize a new instance of the 
object. Objects are represented in terms of non-overlapping elongated blobs and their 
qualitative properties (like straight, curved, tapered, etc.) and constraints on these blobs 
(like joins, bigger-than, etc.). The description is recorded as a semantic network. 

The parallel to our work is in the idea that the representation vocabulary should 
correspond to perceptually salient properties of objects. The description should make the 
visually important parts explicit. Connell talks about the importance of reflecting 
people’s notion of visual similarity: “syntactic difference should reflect semantic 
difference: similar things should give rise to similar descriptions, dissimilar things should 
yield manifestly different descriptions.” 

Connell’s system generalizes descriptions from a very small set of examples by 
comparing their semantic networks and removing constraints and properties that are not 
common between the examples. We believe that the ability to generalize from only a few 
examples stems mostly from the qualitative description vocabulary that already gets rid 
of a lot of information about the detailed properties of an object. The system does not 
have to go through a lot of examples to “average out” the unimportant properties. 

Our system differs from Connell’s approach in that it defines a ranking of the 
constraints. It does not have to discover which constraints are unimportant by seeing their 
absence in additional examples. The ranking already provides this information. This, 
however, depends on how well the ranking reflects the actual biases in people’s 
perception. 

Calhoun et al. presents a system that is most similar to our approach. It is a system 
that learns and recognizes symbols from relatively few examples. The recognizers are 
used for interpreting sketches of physical devices [Kurtoglu and Stahovich, 2002]. 

Like Connell, Calhoun uses semantic networks. The nodes are primitives in the 
symbol (lines and arcs) and the links are constraints between them. Constraints include: 
intersections, relative location of intersections, angle between intersecting primitives, and 
existence of parallel lines. The lines and arcs also have properties: type, length, length 
relative to the sum of all lengths, slope, and radius. To train the recognizers the system 
uses several examples of each symbol, including only the relationships and properties 
that appear with high frequency in the examples. During recognition some degree of 
matching error is allowed. The important part is that different weights are assigned to 
different kinds of errors during matching, reflecting different perceptual importance. In 
other words, if the learned descriptions mandate some unimportant constraints to hold, 
the system can compensate for that during the recognition stage, because the weights on 
matching errors for such constraints will be low. 

The error weights play the same general role as the default relevance scores in our 
system. For example, the relative length constraint in Calhoun’s system is always allowed 
a larger error than the relative orientation constraint (the same is true for the default 
scores in our system – relative length is less relevant than relative orientation). Yet our 
system also adjusts relevance scores from the default scores, based on the overall 
properties of the particular symbol, like obstruction, tension lines, and grouping. Using 
these mechanisms our system approximates the observation that the same type of 
constraint may have different perceptual importance depending on the global 
configuration of primitives. 
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So far we have talked about approaches that use symbolic descriptions (except for 
Rubine’s system). Commonly used statistical machine learning techniques are mostly not 
applicable for our system because we have chosen to learn from only a single example 
and these approaches typically require a very large number of examples. For instance, 
classifiers for handwritten character recognition such as LeCun et al.’s convolutional 
networks, that achieve performance that is close to human subjects, use 6000 samples of 
each character [LeCun et al, 1995].  

Yet among these techniques we would like to mention one approach from the area 
of handwritten character recognition that is similar in spirit to our work. Miller et. al. 
describes a system for learning characters or digits from one example [Miller et al., 2000] 
The authors create a classifier that is based on only a single training example for each 
class. They achieve this by including “prior knowledge”, which is the shared probability 
density on common transforms (deformations) of digits or characters. They create an 
artificial data set by sampling transforms from the distribution and applying them to the 
single example. Then a classifier, like nearest neighbor, for example, can be trained using 
this data set. 

Our system would not be able to use this approach directly because their current 
work is limited to affine transformations (translate, rotate, scale, and sheer). We believe 
that affine transformations are not the only variations that produce an image perceptually 
similar to the original, so the distribution would not capture all the possible variations. 
Consider the example in Figure 2.1. The second arrow cannot be obtained by an affine 
transformation on the first arrow, because it would involve disproportionately scaling 
different parts of the symbol: 

 
 
 
Figure 2.1 The second arrow cannot be obtained by an affine transformation of the 
first arrow. 

Even though Miller’s et al. approach is not directly applicable, the idea of including 
prior knowledge to be able to learn from one example is very similar to our approach. By 
providing perceptually based constraint ranking we allow the system to extract the 
important information from a single example of the symbol. 

In summary, our approach is strongly determined by the fact that we are learning 
from one example. Partially the generalization power comes from the qualitative 
vocabulary of constraints that reflects the relevant properties. Several systems have used 
this approach to address the variability of the symbol instances. In addition, instead of 
using several examples as have been done in other systems, the generalization in our 
system is guided by the relevance ranking based on default scores and global properties 
of the symbol.  
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Chapter 3 Knowledge About Human Perception 
The challenge in learning symbols from a single example is to extract just the right 

subset of properties from it. We believe that the relevant properties are the ones that 
people pay attention to when looking at the symbol. A well-designed graphical language 
would not distinguish symbols by properties that people tend not to notice. If two 
symbols are very perceptually similar, but are intended to mean different things, they 
would be often confused, making the language ineffective. Thus, we suggest that it is the 
perceptually salient properties that constitute the essence of the symbol and should be 
learned by the system for each example. 

We have turned to studies of human perception and memory to understand what 
people attend to and what they ignore in a geometric configuration. We rely mostly on 
Goldmeier’s work on perceived similarity of geometric shapes and on memory traces 
[Goldmeier, 1972], [Goldmeier, 1982]. We also draw useful insights from Arnheim’s 
book on art and visual perception [Arnheim, 1974] and studies of the perceptual grouping 
by the gestalt psychologists [Wertheimer, 1923]. This chapter describes the findings of 
these studies that inspired the main generalization mechanisms used by the system: 

• Qualitative vocabulary 
• Default relevance ranking 
• Adjusting relevance scores based on global properties of the symbol: 

o Tension lines 
o Obstruction 
o Grouping 

3.1 Singularities as the basis for qualitative vocabulary 
Goldmeier attempted to discover which properties of a geometric figure people 

tend to notice when looking at a symbol. He uses people’s perception of similarity to 
explore this: “Some features of a figure are more important for the over-all impression 
than others, so that changes of these features have a marked effect on similarity” 
[Goldmeier, 1972]. Figure 3.1 illustrates a typical experiment. Examine the symbol in 
Figure 3.1a and ask yourself which of 3.1b and 3.1c is more similar to 3.1a? 

 
 
 
 
 
 
 
 
Figure 3.1 Which of b and c is more similar to a? 

The majority of subjects chose c. Note that the left side of b is exactly the same as 
a, yet even though in c all the lengths and angles are slightly changed, it is considered 
more similar because of preserved symmetry. It is the symmetry that was perceptually 
salient in the original figure. 

b) c) a) 
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Goldmeier’s experiments showed that people frequently attend to properties that he 
called singularities, special cases in the space of geometric configurations (see examples 
below). 

 
 
 
 
 
 

Figure 3.2 a) A vertical (or horizontal) line is a special case of possible line 
orientations. b) Parallel lines are a special case for possible angles between two lines 

Features such as verticality, horizontality, parallelism, etc., are singular in the sense 
that a small variation in them makes a qualitative difference: Rotate a vertical line 
slightly and it is no longer vertical; do the same to a line described as “slanting upward” 
(i.e., positive slope) and its qualitative description stays the same. 

Goldmeier’s work showed that, while singularities significantly affect perception of 
the symbol, people are relatively insensitive to variations in nonsingular properties. 
Consider Figure 3.3a: 

 
 
 

 
 

 
Figure 3.3 Which is of b and c is more similar to a? 

Even though the thickness of the figure is preserved in c, the figure does not 
preserve the straight line, so the majority of subjects chose b. The subjects tolerated a 
large distortion in thickness and curvature, which are non-singular properties, because the 
more salient singular property (straightness) was preserved in b.  

Goldmeier describes the way people generalize geometric properties that they see 
in a symbol. For each property “the value is coded either as singular, nearly singular, or 
nonsingular… This system combines coding accuracy in the narrow singular range with 
information reduction in the broad nonsingular range” [Goldmeier, 1982]. We use this 
observation to reduce the description vocabulary to a few qualitative states, lumping the 
range of nonsingular values into one term. For example, for a slanted line it is not 
necessary to record the exact angle. It is enough to learn only that it has a positive or a 
negative slope. 

 Goldmeier notes that the nearly singular values are perceived as a distortion to the 
singularity. Taking into account the nature of sketching where it is natural to expect 
sloppy drawing, this distortion can typically be considered accidental. Our system 
interprets nearly singular values as intended singularities, so the vocabulary consists only 
of singular and nonsingular terms. 

Goldmeier explicitly mentions some of the singularities, like parallelism, 
horizontality, verticality, and straightness. We have picked the rest of the terms for the 

a) b) 

a) 

c) b) 
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vocabulary based on our own introspection and relying on Goldmeier’s description of 
singularities as the “more regular, better, more unique” [Goldmeier, 1982], p. 44] and as 
properties a change in which significantly alters the perception of the symbol.  

The system records the properties of the symbol in the form of unary and binary 
constraints on the geometric primitives (lines and ovals) in the symbol. The table below 
shows the list of supported constraints (constraints that we consider singular are shown in 
bold): 

 
Touch constraints: Connects, meets, intersects, touches, tangent, overlaps 
Orientation: Horizontal, vertical, positive-slope, negative-slope 
Aspect ratio: Elongated, non-elongated 
Relative position: Above-centered, right-centered, left-centered, below-

centered, above, below, right, left, upper-right, upper-left, 
lower-right, lower-left, inside-centered, inside 

Relative orientation: Parallel, perpendicular 
Relative length: Same-length, longer 
Relative size: Same-size, larger 

  

3.2 Default ranking: relative importance of different singularities 
In addition to showing that singular properties are perceptually more important than 

nonsingular ones, Goldmeier also compared singular properties with each other 
[Goldmeier, 1972]. Figure 3.4 and Figure 3.5 illustrate how this is done for different axes 
of symmetry. The subjects were asked which of b and c is more similar to a. 

 
 
 
 
 
 
 
Figure 3.4 Which of b and c is more similar to a? 

 
 
 
 
 
Figure 3.5 Which of b and c is more similar to a? 

In Figure 3.4 the majority of the subjects chose c, while in Figure 3.5 the choice 
was b, even though the shapes in Figure 3.5 are simply rotated versions of Figure 3.4. In 
both cases the viewers preferred the vertical axis of symmetry. 

Although this example is not directly applicable to our system (since it currently 
does not support symmetry detection), it illustrates the experimental framework in which 

a) b) c) 

a) b) c) 
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the importance of different properties can be compared. Goldmeier presents several 
similar experiments. They are not sufficient, however, to construct a ranking of the 
different constraints used by our system. We had to use our own introspective analysis to 
rank the average perceptual importance of different types of symbol properties. We did 
this by studying common symbols in several domains (electric circuits, military planning, 
mechanical engineering, etc.) and determining which of their properties allowed most 
variation without large perceptual alteration to the symbols. The list below shows the 
order in decreasing importance: 

 
1. The parts that the symbol is composed of. 
2. Touch constraints (connects, meets, etc.) 
3. Orientation. 
4. Relative orientation. 
5. Relative position. 
6. Relative length and relative size. 
 
Note that this is the default ranking of constraints. Goldmeier argues that the 

saliency of a given property depends on the particular configuration of the primitives in a 
shape. The next section describes the observations that helped us develop heuristics for 
adjusting the relevance of different constraints based on global properties like alignment 
(tension lines), obstruction, and grouping of primitives. 

3.3 Effect of global properties on constraint relevance 

3.3.1 Tension Lines 
In his book Art and Visual Perception, Arnheim argues that people pay attention to 

regular alignments of geometric primitives in a symbol, particularly horizontal and 
vertical alignments. In Figure 3.6a the circle is perceived to be “out of balance,” while 
placing it on one of the dashed lines in 3.6b would create a more “stable” configuration 
[Arnheim, 1974]: 

 
 
 
 
 
 
 
Figure 3.6 Regular alignments 

Arnheim talks about “the hidden structure of a square” that can be explored by 
placing the circle in different places inside the square. The lines shown in Figure 3.6b 
emerge as axes of stability, especially the horizontal and vertical lines. The alignment of 
corners and the centers of the sides of the square form a kind of perceptual grid that other 
elements are “pulled” toward. 

In our system we call these alignments tension lines, which we define in terms of 
alignments of line endpoints and midpoints. The system identifies a tension line wherever 

a) b) 
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at least two such line points align horizontally or vertically (currently, we do not support 
diagonal alignments). Although this definition of tension lines may not capture the full 
complexity of the perceptual mechanisms that create the hidden structure, we believe that 
it can serve as a useful approximation. 

Since the hidden structure grid represented by the tension lines is a salient element 
of the symbol, we increase the relevance of relative length, position, and orientation 
constraints that contribute to the creation of these lines. 

3.3.2 Obstruction 
We looked a variety of symbols to try to understand the perceptual importance of 

different constraints. In the process we have noticed that in the symbols that contain a lot 
of primitives, our attention seems to be limited to the local interactions between them. 
Consider the example in Figure 3.7a below: 

 
 
 
 
 
 
 
 
Figure 3.7 a) Pattern of lines. b) Two parallel lines that are part of the pattern. c) 
Other pairs of parallel lines that are part of the pattern 

The lines in Figure 3.7b are part of the pattern in a. In b it is noticeable that the 
lines are parallel, while in a, that is not something we would normally notice. Part of the 
reason for this might be that we perceive the pattern as a whole – a slanted elongated blob 
of lines. Nevertheless, notice that the parallelism of the pairs of lines in c is more 
noticeable in the original pattern than the parallelism of pair b. It is easier to pay attention 
to the local interaction of these lines because there are no other lines separating them. We 
try to approximate this effect by the notion of obstruction, which is measured by the 
number of geometric primitives between a given pair. The relevance of constraints is 
decreased for higher obstruction values. 

3.3.3 Grouping 
Finally, we also use observations of perceptual bias from the Gestalt psychologists, 

who noted that people tend to combine individual primitives into a greater whole, 
grouping them by proximity, similarity, etc [Wertheimer, 1923]. For example, Figure 
3.8a is perceived as two rows of circles, rather than six individual circles. Properties of a 
row as a whole are also perceptually more important than properties of its components. 
We don’t tend to notice the vertical alignment of the circles in two columns the way we 
do in Figure 3.8b: 
 
 

 
 

a) b) 

a) b) c) 
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Figure 3.8 Perceptual grouping. It is generally not noticeable that parts of a are the 
same as b 

Grouping allows describing symbols more concisely. In the figure below the group 
consisting of the circle and the arrow is centered inside the rectangle. Conveying the 
same relationship using individual constraints on each of the primitives would be much 
harder. 

 
 
 
 
 
Figure 3.9 Military planning symbol for mortar 

Our system currently supports two grouping principles: connectedness and 
familiarity of shape, i.e. previously learned shapes are recognized as separate groups 
within a new symbol. We decrease the relevance of constraints between pairs of 
primitives that belong to different groups. 

3.4 Challenges 
Studies show that people’s view of geometric properties, such as sizes, angles, 

orientation, and curvature, do not easily map onto exact measurements from the drawing. 
Goldmeier notes: “Experiments demonstrate that similarity does not vary parallel with 
simple and obvious geometric parameters.” Consider the example below, taken from 
[Goldmeier, 1972]: 

 
 
 
 
 
 
Figure 3.10 Which angle is 90º? 

 
 
 
 
Figure 3.11 Which angle is 90º? 



 28

It is much harder to tell which angle is 90º, even though the angles in Figure 3.10 
are simply rotated versions of the ones in Figure 3.11. 

Another example of a common misjudgment is the famous perceptual illusion 
given below: 

 
 
 
 
 
 
Figure 3.12 Do the lines seem the same length? 

Even though the mechanisms causing such misjudgments are not understood well 
enough to exactly replicate such biases computationally, we include heuristics for the 
most common cases, decreasing the relevance of perpendicularity, for example, if it is 
found in other than a horizontal/vertical configuration. 
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Chapter 4 Examples of Performance 
Even with the use of qualitative vocabulary, the number of the constraints initially 

identified by the system for a given symbol can be fairly large. Most people would find 
only a small subset of these constraints relevant for describing the symbol. The system 
uses observations about people’s perceptual biases described in the previous chapter to 
calculate relevance scores and filter out the large number of low scoring constraints. For 
symbols with many primitives (more than 20) the reduction from the original number of 
constraints can be more than tenfold. 

The calculation is based on the default relevance scores for each constraint type and 
the three mechanisms for adjusting these scores based on the global properties of the 
symbol – obstruction, tension lines, and grouping. This chapter illustrates in detail the 
effect of each of the mechanisms on a number of examples. 

Consider the military symbol in Figure 4.1 drawn for the system. For this example, 
we assume that the system has not previously been taught the rectangle or the triangle 
symbols, so it is not able to identify them in the symbol. 

 

      
 
Figure 4.1 Military symbol: a) Strokes segmented into primitives. b) Straightened and 
labeled primitives 

The system initially identifies 166 pair-wise constraints in the symbol (see full list 
in Appendix A), examples of which include: 

 
parallel: (l10 l6) (l9 l5) 
longer: (l2 l5) 
lower-right: (l6 o11) 
same-length: (l8 l10) 
 
Scoring on perceptual relevance and removing constraints with low scores leaves 

only 80 constraints in the final description: 
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Figure 4.2 Military symbol: a) Strokes segmented into primitives. b) Straightened and 
labeled primitives 

CONSTRAINTS: 
connects: (l5.p2 l6.p1) (l4.p2 l6.p2) (l4.p1 l5.p1) (l3.p2 l6.p2) (l3.p2 l4.p2) (l2.p2 l3.p1) 
(l1.p2 l5.p1) (l1.p2 l4.p1) (l1.p1 l2.p1) (l9.p2 l10.p1) (l7.p1 l10.p1) (l7.p1 l9.p2) 
meets: (l7.p2 l8.c) 
horizontal: (l4) (l2) (l8) 
vertical: (l3) (l1) (l7) 
pos-slope: (l10) (l6) 
neg-slope: (l5) (l9) 
above: (l10 l8) (l4 l5) (l4 l6) (o11 l10) (l9 l8) 
right: (o11 l1) 
below: (l5 l4) (l8 l10) (l6 l4) 
left: (o11 l3) 
upper-right: (l10 l7) (o11 l9) (l3 l4) (l3 l6) (l2 l1) 
upper-left: (l2 l3) (l1 l4) (l1 l5) (l9 l7) 
lower-right: (l5 l1) (l10 o11) (l4 l1) (l3 l2) (l3 o11) (l8 l9) (l7 l9) 
lower-left: (l4 l3) (l1 l2) (l1 o11) (l9 o11) 
above-centered: (o11 l4) (o11 l7) (o11 l8) (l2 l4) (l2 l7) (l2 l8) (l2 o11) (l8 l4) (l7 l4) 
(l7l8) 
right-centered: (l10 l9) (l3 l1) (l6 l5) 
same-length: (l5 l6) (l2 l4) (l1 l3) (l9 l10) 
longer: (l4 l5) (l4 l6) (l3 l2) (l3 l4) (l3 l6) (l1 l2) (l1 l4) (l1 l5) (l7 l9) (l7 l10) 

  
The next three sections illustrate the adjustments of the default relevance scores the 

system makes to arrive at this description. The mechanisms are applied in the order 
discussed. 
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4.1 Obstruction 
 

 
 
Figure 4.3 Military symbol 

For each pair of primitives, the system measures the obstruction value which is 
approximately the number of other primitives between the pair. For example, there are 5 
primitives between lines l2 and l4. The precise definition of the obstruction values is 
given in Chapter 5. 

The presence of other obstructing primitives makes the relationship between a pair 
of primitives less noticeable. To reflect this, the system decreases the relevance of 
relative orientation, position, length, and size constraints for the pair depending on the 
obstruction value – larger obstruction values result in greater decrease. Examples of 
constraints with a significant decrease include: 

 
parallel: (l10 l6) (l9 l5) 
longer: (l3 l5) 
same-length: (l10 l8) 
above: (l10 l6)  
upper-right: (o11 l5) 
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4.2 Tension Lines 
Tension lines are horizontal and vertical alignments of two or more line endpoints 

or center points. Figure 4.4 shows the tension lines (in red) identified by the system in the 
example: 

 

     
 
Figure 4.4 Tension lines formed by the primitives in the symbol 

The aligned position of the primitives in the user’s drawing leads to relative length 
and relative position constraints. Violating these constraints would break this 
perceptually salient alignment, so the relevance of these constraints is increased. 

For example, line l3 is centered to the right of line l1 and they have the same 
length. The alignment of their end and center points is considered a salient property of the 
symbol. The system increases the relevance of the “right-centered” and “same-length” 
constraints necessary to maintain this alignment. These constraints become important 
even though their relevance may have been previously downgraded by the obstruction 
heuristic. 

The system adjusts the relevance of 15 relative position and length constraints. 
Examples of such constraints are given below: 

 
same-length: (l4 l2) (l1 l3) (l6 l5) 
right-centered: (l3 l1) (l10 l9) 
above-centered: (l2 l4) 
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4.3 Grouping 
 

 
 
Figure 4.5 Military symbol 

People tend to group together subsets of primitives in a symbol, especially when it 
contains a lot of primitives. The group is perceived as one whole and relationships 
between individual primitives belonging to different groups become less perceptually 
important. Our system currently supports two perceptual grouping principles: 
connectedness and familiarity of shape. In this case only the connectedness principle 
applies since the system has not previously been taught the rectangle or triangle symbols 
(which would have been recognized as familiar shapes). In Figure 4.5, the system 
identifies three connected components: 

 
 
 
 
 
 
 
 
 
Figure 4.6 Grouping of the primitives in Figure 4.5 based on connectedness 

For this symbol, the system decreases the relevance of 35 constraints between 
primitives in different connected components (like “longer (l4 l8)”, or “longer (l3 l7)”). 

4.4 Another Use of Tension Lines 
In the example in section 4.2 the system increases the relevance of a constraint 

between a pair of primitives if the endpoints of these primitives contribute to the 
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formation of two tension lines. The tension line heuristic is also applied when one tension 
line is formed by centers of several primitives (more than two are required), even if their 
endpoints are not aligned. Alignment of several centers creates a “stronger” tension line. 
The system increases the relevance of each “above-centered” or “right-centered” that has 
to hold in order not to break the alignment. 

Consider the symbol for DC voltage in Figure 4.7: 
 

   
 
Figure 4.7 Symbol for DC voltage: a) Drawn strokes segmented into geometric 
primitives. b) Strokes straightened out and labeled 

The description for this symbol is shown below. The system initially identified 45 
constraints in the symbol. After calculating relevance scores and filtering out low scoring 
constraints, 28 constraints were left in the description. 

 
CONSTRAINTS: 
meets: (l1.p2 l2) (l6.p1 l5) 
horizontal: (l1) (l6) 
vertical: (l5) (l4) (l3) (l2) 
right-centered: (l5 l1) (l5 l2) (l5 l3) (l5 l4) (l4 l1) (l4 l2) (l4 l3) (l3 l1) (l3 l2) (l2 l1) 
(l6 l1) (l6 l2) (l6 l3) (l6 l4) (l6 l5) 
same-length: (l3 l5) (l2 l4) 
longer: (l5 l4) (l3 l2) (l3 l4) 

 
All the primitives form a strong horizontal tension line. Consider the constraint 

“right-centered l6 l1.” The relevance of this constraint is first significantly brought down 
by the obstruction mechanism since there are several lines between lines l6 and 11. 
However, the presence of the tension line causes the system to increase of the relevance 
of this constraint and it is not filtered out from the description. 

Examples of the constraints that did not make the relevance bar after the scoring are 
“longer (l5 l2) (l5 l1) (l6 l1)” etc. 

4.5 Familiar Shapes 
This section demonstrates the effect of the second grouping factor supported by our 

system – the familiarity of shape. It groups together primitives within the symbol that 
form a familiar shape – a symbol that has previously been learned by the system. 

In many domains (e.g. military planning) symbols are composed of common shapes 
like rectangles, triangles, diamonds, circles, etc. or a combination of other simpler 
symbols. A much more concise description of the symbol is often possible in terms of 
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constraints on those shapes as a whole. Those constraints become more perceptually 
important while the constraints between individual primitives that belong to different 
shapes are less noticeable. 

The system checks whether any of the previously learned symbols are contained in 
the new symbol and identifies such subparts as separate groups. Consider the symbol in 
Figure 4.8. Before learning it, the system has been shown a rectangle, a square, a triangle, 
and a cross and produced descriptions for those symbols. It searches for them in the new 
symbol. 

 

          
 
Figure 4.8 Military planning symbol composed of familiar shapes 

Below is the system’s description for the symbol: 
 
GROUP HIERARCHY: 
Group g1: l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 

Group g2 subobject - regular triangle: l5 l7 l6 
Group g3 subobject - regular triangle: l8 l10 l9 
Group g4 subobject - square: l14 l13 l12 l11 

   Group g5 subobject - square: l18 l17 l15 l16 
Group g6 connected-component: l19 l4 l3 l1 l2 l20 

Group g7 subobject - cross: l20 l19 
Group g8 subobject - rectangle: l4 l3 l2 l1 

 
CONSTRAINTS: 
upper-right:(g3 g4) 
upper-left:(g2 g5) 
above-centered:(g3 g5) (g2 g4) 
right-centered:(g5 g4) (g3 g2) 
inside:(g5 g8) (g4 g8) (g3 g8) (g2 g8) 
meets:(l19.p2 l3) (l20.p1 l3) 
above-centered:(l20 l3) (l19 l3) 
 
The system initially found 500 constraints in the symbol. 340 of these had their 

scores reduced due to the grouping factor. For example, the relative length and position 
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constraints between lines l14 and l16 are not affected by obstruction and would be 
considered important using the tension line heuristic. Yet they receive a low relevance 
score because the lines belong not only to different connected components but also to 
different previously learned symbols, which in our system makes the relevance decrease 
even greater. 

The use of known shapes allows the system to describe the symbol in terms of 
more general constraints on the shapes as a whole. There is also no need to include the 
constraints that are already listed in the descriptions for previously learned symbols (there 
were 93 such constraints in this example). As a result the description is compact even 
though the symbol has a lot of primitives and the initial number of constraints is very 
large. There are only 14 constraints in the final description. 
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Chapter 5 Implementation 
This chapter describes the processing steps the system goes through from the time 

the user starts drawing the symbol to generating the final description. We provide the 
definition of all supported constraints and their default relevance scores. We show how 
the system adjusts these scores to filter out irrelevant constraints, based on three factors: 
obstruction, tension lines, and grouping. We also present a graphical interface for 
displaying the resulting constraints. 

Figure 5.1 below briefly outlines the processing steps to generate the textual 
description: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Processing steps to produce the description of a symbol 

Each section describes one of these steps and illustrates the work of the system on 
the symbol in Figure 5.2: 

 
 
 
 
 
Figure 5.2 Military planning symbol 

Drawn input 

Stroke segmentation 

Identifying all constraints 

Finding tension lines Calculating obstruction Grouping 

Relevance scores and filtering 

Removing redundancies 

Description (text output) 
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5.1 Stroke segmentation 
The user draws the symbol in the system’s drawing window (Figure 5.3), which 

provides a grid to make it easier for the user to draw carefully. The program accepts any 
mouse or pen-based input.  

 

 
 
Figure 5.3 Drawing window 

We use a toolkit developed by [Sezgin, 2001] to segment the strokes into simple 
geometric primitives. The toolkit takes into account both stroke curvature and pen speed 
data to find separate geometric primitives, based on the observation the people often slow 
down the pen at corners. Our system instructs the toolkit to classify each stroke as either 
a polyline or an oval.  

If the user slows down accidentally (which often happens when using a mouse, 
rather then pen input) the segmentation may produce spurious corners. We use alternating 
segment colors for each primitive within a stroke to provide feedback on segmentation 
(Figure 5.4). The user can press “Undo” and redraw the stroke, if the segmentation is 
incorrect. 

 

    
 
   a)     b) 
 
Figure 5.4 a) Original single stroke. b) Segmentation of the stroke 

Figure 5.5 below shows the symbol from Figure 5.2 in the system’s drawing 
window:  



 39

   
 
Figure 5.5 Military planning symbol: strokes segmented into geometric primitives  

The user presses the “Go” button after completing the drawing to generate the 
description. All the strokes on the surface are considered to be one symbol. 

As we have mentioned, generalization is done on the primitives, not on the stroke 
data, so the order and the number of strokes does not affect the produced description. The 
advantage of this approach is that the user is not required to draw the symbol in exactly 
the same way during sketching as during the teaching phase – the system would 
recognize it based on what it looked like, rather than how it is drawn. On the other hand, 
some ways of drawing are more likely to occur than others. For example, one would 
often draw a rectangle starting from the top-left corner and all in one stroke. The stroke 
order and number information could give additional clues for the recognition engine for 
distinguishing between symbols in cases of ambiguity. Our system currently does not 
explicitly record this information, although the order is implicitly contained in the 
primitive labeling. 

5.2 Identifying all constraints 
Once the drawing is completed, the system records all the constraints in the 

drawing. Each constraint type is represented by a graph – one graph for “connects”, one 
graph for “above”, etc. Geometric primitives are nodes in the graph and edges signify 
whether the constraint holds between a pair of nodes. Unary constraints, like 
“horizontal”, reuse the same data structure for uniformity, with all the edges as self-loops. 
The edges in the graphs are directional, so for each symmetric constraint like “same-
length” or “parallel” two edges will be found for a given pair of primitives. The final 
output description includes only one of each pair of symmetric constraints to minimize 
redundant information. 

To identify constraints the system considers each primitive for unary constraints 
and each pair of primitives for binary constraints. As mentioned in 0, the vocabulary 
consists of singular and non-singular constraints. The system first tests whether a singular 
constraint holds for the primitive (or pair). For example, for line orientation, the system 
tests whether it can be considered horizontal or vertical. Nearly singular values, like 
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almost horizontal, are treated as accidental noise and recorded as singular. We describe 
the noise thresholds in the next section. 

If the singular constraint is not satisfied, the system then tests the non-singular 
constraints (like “positive-slope” or “negative-slope” for line orientation). This approach 
corresponds to Goldmeier’s observation that people’s perception is sensitive to 
singularities and codes geometric properties in terms of their relation to the singularity 
[Goldmeier, 1982], p. 43]. That is, for example, if a line is perceived as horizontal, it 
cannot be simultaneously seen as positively sloped. 

5.2.1 Noise thresholds and constraint definition 
It is hard to draw the symbol perfectly; not all lines intended to be exactly 

horizontal, connected, or aligned will come out that way (Figure 5.6). 
 

  
 
 
 
Figure 5.6 Noisy drawing of a square: a) Original stroke. b) Stroke segmented into 
lines 

The system allows a certain amount of noise when testing for presence of 
constraints. Noise tolerances are governed by three constants: 

 
Constant Value Example 
MAX_OFFSET: 
This constant is used for testing 
any constraints where the system 
needs to determine whether the 
distance between two points can 
be considered negligible. The 
constant specifies that the distance 
should be less than 7 pixels. 

7 pixels Two lines will not be considered 
connected if the distance d between their 
endpoints is greater than 7 pixels. 
 
 
 
 
 

d 

a) b) 
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MAX_ANGULAR_OFFSET 
This constant specifies the 
maximum angular difference for 
which the angle can be considered 
negligibly small. It is used for 
constraints like line orientation or 
relative orientation. 

10º Two lines will not be considered parallel 
if their angle difference α is more than 
10º. 
 
 
 
 
 

SIZE_TO_OFFSET_RATIO 
We do not want to consider the 
distance d between two points 
negligible if the size of the 
primitives in question is small 
(even when the MAX_OFFSET 
threshold is satisfied). The 
constant specifies the minimum 
ratio between the size of the 
smallest primitive and the distance 
d. 
The size should be at least 3 times 
larger than d for d to be considered 
negligible 

3 times Line l1 is not considered to meet line l2 
because its length s is less than 3 times 
larger than the distance d to line l2. 
 
 
 
 
 
 
 

 
We use the noise tolerance constants to determine when the system can decide that 

a constraint holds in the drawing. Below we describe the definitions for each constraint in 
the vocabulary. In the definition tables singular constraints are shown in bold. 

5.2.1.1 Orientation 
“Horizontal” and “vertical” constraints hold if the angle difference between the 

ideal and the actual orientation of the line in the drawing is less than MAX_ 
ANGULAR_OFFSET and if the change in y (for horizontal) or x (for vertical) 
coordinates from the center to the endpoints is less than MAX_OFFSET. If the 
“horizontal” or “vertical” constraint is not satisfied, the orientation is recorded as either 
“positive slope” or “negative slope,” depending on the slope of the line. The orientation 
of an oval is defined by the orientation of its longer axis and applies only to ovals 
satisfying the “elongated” constraint (see definition below). 
 
Constraint Applies to Example 
Horizontal lines, elongated ovals 

 
 
 

Vertical lines, elongated ovals  
 
 

Positive Slope lines  
 

Negative Slope lines  
 

α 

s 
d l2 

l1 
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5.2.1.2 Aspect ratio 
Ovals are considered “non-elongated” if the ratio of their length to their thickness is 

less than 1.5. Otherwise the oval is “elongated”. 
 
Constraint Applies to Example 
Non-elongated ovals  

 
 

Elongated ovals  
 
 

 

5.2.1.3 “Touch” constraints 
We refer to “connects,” “meets,” “tangent,” etc. as the “touch” constraints. The 

distance d between the points that are supposed to be coincident should be less than 
MAX_OFFSET. The table below shows how we define d for each constraint. Also, the 
ratio of the size of the smallest primitive and d should be greater than 
SIZE_TO_OFFSET_RATIO. The size of a line is its length and the size of an oval is the 
maximum of its width and height. 

 
Constraint Applies to Definition of tested distance d Example 
Connects Lines The distance between line 

endpoints. 
  
 
 
 

Meets lines, line 
and oval 

The perpendicular distance 
from the line endpoint to the 
line segment or oval 
boundary. 

 
 
 

Intersects lines and 
ovals 

Not applicable. The system 
tests for the presence of 
intersection. 

 
 
 

Touches Ovals The smallest perpendicular 
distance between oval 
boundaries. 

  
 
 

Tangent line and 
oval 

The smallest perpendicular 
distance between the line and 
the oval. 

 
 
 

Overlaps Ovals Not applicable.The system 
tests for the presence of 
intersection of oval 
boundaries. 
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It may happen that several of the “touch” constraints are satisfied for a given pair of 
primitives at the same time. For example, both “meets” and “intersects” constraints 
would be satisfied in Figure 5.7. 

 
 
 
 
Figure 5.7 The symbol satisfies both "meets" and "intersects" constraints 

We want to choose only one interpretation. We define an order in which “touch” 
constraints are tested and record only the first satisfied constraint: 
 
For lines For line and oval For ovals 
1. Connects 
2. Meets 
3. Intersects 

1. Meets, tangent 
2. Intersects 

1. Touches 
2. Overlaps 

 
For some “touch” constraints the system also specifies where exactly the primitives 

touch. For example, Figure 5.8 shows the kinds of cases we would like to distinguish: 
 
 
 
 
 
 
 
Figure 5.8 a) Different points where one line may meet the other. b) Different points 
of intersection of a line with the oval 

For each of the “connects,” “meets,” “intersects,” “touches,” and “tangent” 
constraints the system records the points of coincidence on both primitives. For example, 
“meets (l1.p1 o1.t)” means that point p1 of line l1 meets oval o1 at the top. 

As with all constraints, we attempt to reflect perceptual singularities in the 
specification of coincidence points. The table below shows the definitions of possible 
coincidence points on a line, with singular points shown in bold. Endpoint labels p1 and 
p2 are assigned arbitrarily. 

 
Point on a line Notation Example 
Endpoint 1 p1 
Any point between center and endpoint1 cp1 
Center c 
Any point center and endpoint2 cp2 
Endpoint 2 p2 

 

 
The end and center points are singular, so the system always starts by testing 

whether a constraint holds for one of these points, that is if the distance from the 

p1 
cp1 

c 
cp2 

p2 

a) b) 
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coincidence point on the other primitive to one of these points is less than 
MAX_OFFSET and satisfies the SIZE_TO_OFFSET_RATIO threshold. If not, one of 
the non-singular points is recorded. 

Similarly, coincidence points are defined for ovals. Singular points that are tested 
first are shown in bold. 

 
Point on an oval Notation Example 
Top t 
Top right tr 
Right r 
Bottom right br 
Bottom b 
Bottom left bl 
Left l 
Top left tl 

 

5.2.1.4 Singular position constraints 
These constraints specify relative position of the primitives and the horizontal or 

vertical alignment of their geometric centers. The centers are considered horizontally or 
vertically aligned if the difference in their respective y or x coordinates is less than 
MAX_OFFSET and SIZE_TO_OFFSET_RATIO is satisfied. 

 
Constraint Applies to Example (the position of line 

relative to oval) 
Above-centered lines and ovals  

 
 
 
 

Right-centered lines and ovals  
 
 

 
We do not test for “below-centered” and “left-centered” constraints because their 

definition is symmetric to “above-centered” and “right-centered” respectively. 

5.2.1.5 Non-singular position constraints 
These constraints specify relative positions of the primitives and are recorded only 

in the absence of the corresponding singular position constraints described in the previous 
section. The recorded constraint depends on the position of the center of the first 
primitive relative to the bounding box of the second primitive. To test the constraint 
“above l1 l2,” for example, the system would look at the center of line l1 and the 
bounding box of line l2. 
 

t 
tr 

r 
br 

b 
bl 

l 

tl 
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Constraint Applies to Example (the position of line 
relative to oval) 

Above lines and ovals  
 
 
 
 

Below lines and ovals  
 
 
 
 

Right lines and ovals  
 
 
 
 

Left lines and ovals  
 
 
 

Upper-right lines and ovals  
 
 
 
 

Upper-left lines and ovals  
 
 
 
 

Lower-right lines and ovals  
 
 
 
 

Lower-left lines and ovals  
 
 
 
 

 
The limitation of these definitions is that the boundaries between these terms do not 

correspond to clear qualitative perceptual boundaries. For example, the difference 
between the two drawings in Figure 5.9 is almost unnoticeable, while the produced 
descriptions would be different – one would be “above (o1 l2)” and the other “upper-right 
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(o1 l2).” This means that the description produced for the first symbol would prevent the 
second symbol from being considered an instance of the first one. 

 

   
 
Figure 5.9 Two very similar drawings that produce dissimilar descriptions  

5.2.1.6 “Inside” and “inside-centered” position constraints 
These constraints apply to primitives inside ovals. The “Inside-centered” constraint 

holds if the primitive is inside the oval and the coordinate difference between its center 
and the center of the oval is less than MAX_OFFSET and satisfies the 
SIZE_TO_OBJECT_RATIO. Otherwise only the “inside” constraint holds. 
”Inside” constraints do not have to hold exactly in the actual drawing, as long as they 
hold if noise were removed from the drawing. For example, in Figure 5.10, the line is 
considered to be inside the oval because the system decides that it satisfies the “meets” 
rather than the “intersects” constraint with the oval: 
 

 
 

Figure 5.10 The line is considered to be inside the oval 

Constraint Applies to Example (the position of line 
relative to oval) 

Inside and 
centered 

line and oval, oval and oval  
 
 
 

Inside line and oval, oval and oval  
 
 
 

 

5.2.1.7 Relative orientation 
“Parallel” and “perpendicular” constraints hold if the actual angle between the lines 

in the drawing differs from the ideal angle by less than MAX_ANGULAR_OFFSET. 
The system records these constraints only for lines that it identified as positively or 
negatively sloped. This is done because, as we show further in Section 5.6, the system 
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never filters out “horizontal” and “vertical” constraints. “Parallel” and “perpendicular” 
constraints only would only provide redundant information for horizontal and vertical 
lines, so the system does not record them. 

Also, as shown in 0, it is hard for people to accurately tell the angle between the 
two connected slanted lines (see Figure 3.10 and Figure 3.11), so we do not record the 
“perpendicular” constraint for such lines. 
 
Constraint Applies to Example (the position of line 

relative to oval) 
Parallel Lines  

 
 

Perpendicular Lines  
 
 

 

5.2.1.8 Relative length 
Two lines are considered to have the same length if the ratio of the length 

difference over the length sum is less than 0.05. Otherwise a “longer” constraint is 
recorded. 
 
Same length Lines  

 
 

Longer Lines  
 
 

 

5.2.1.9 Relative size 
The size of the oval is defined as the maximum of its width and its height. Two 

ovals are considered to have the same size if the ratio of the size difference over the size 
sum is less than 0.08. Otherwise a “larger” constraint is recorded. 
 
Constraint Applies to Example (the position of line 

relative to oval) 
Same size Ovals  

 
 

Larger Ovals  
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5.2.2 Possible contradictions  
Tolerances for noise make it possible to record contradicting constraints, because 

the system tests constraints for each pair of primitives separately. For example, in Figure 
5.11a, the system will decide that both lines l1 and l2 connect to the endpoint of line l3 if 
the distance between lines l1 and l2 is smaller than MAX_OFFSET. Remember that a 
“meets” constraint is never recorded if “connects” is found first. The system examines 
pairs (l1 l3) and (l2 l3) separately (Figure 5.11b). For both of these pairs, the distance 
between line endpoints is small enough for the system to identify a “connects” constraint. 
Yet it also decides that both lines l1 and l2 are vertical, which contradicts the “connects” 
constraints. 

 

     
 
 
Figure 5.11 a) Drawing resulting in potential contradictory constraints. b) Pairs of 
primitives separately examined by the system 

Figure 5.12 shows another example that may cause contradictions. If the noise 
tolerance is large enough compared to the length of line l3, the system will decide that 
both lines l2 and l3 are centered to the right of l1. Yet l3 is also above l2. 

 

 
 
Figure 5.12 Drawing resulting in potential contradictions 

We have not implemented a mechanism to detect and correct such contradictions. 
Currently, the only solution for the user is to draw carefully, keeping in mind the 
magnitude of the tolerance thresholds. The MAX_OFFSET threshold is indicated by the 
size of the grid cells. The smallest primitives and distances in the symbol should be larger 
than the grid size. And the level of noise, like accidental gaps and misalignments, should 
be smaller than the grid size. 

If the physical size of the pixels on the device is too small, it may be hard to keep 
the noise under the MAX_OFFSET (which is specified in pixels) when drawing. We 
allow the user to change this constant, which will be reflected visually in the grid size. 

 
 
 

a) b) 
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Absolute noise thresholds may be somewhat unnatural. Consider the lines in Figure 
5.13: 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.13 a) Short lines. b) Long lines 

Although the distance between the endpoints of the two lines is the same in both 
cases, the lines in Figure 5.13b are much more likely to be perceived as connected than in 
the lines in Figure 5.13a. That means that the maximum tolerance for line connectivity 
could be larger for longer lines. 

We do decrease the noise threshold if primitives are small, which is achieved by the 
mandatory minimum SIZE_TO_OFFSET_RATIO. This constant always limits the noise 
threshold to less than a third of the primitive size. Yet the system does not increase the 
noise threshold beyond MAX_OFFSET if primitives get larger. 

We chose to have an absolute maximum threshold for all primitive sizes, so that it 
is clearer to the user what the system’s maximum noise tolerance is. We believe that this 
would make it easier to determine how carefully one should draw, though we have not 
verified this assumption in user studies. In the future work, if the system includes 
contradiction resolution, size-dependent noise thresholds will probably be more 
appropriate. 

Although there is no generic mechanism for contradiction detection, we have 
included several routines to correct one type of common mistake with relative length and 
size constraints. These routines enforce the transitive closure in “same-length” and 
“same-size” constraints and remove the “longer” and “larger” constraints that contradict 
the closure. 

Consider the triangle in Figure 5.14a. In Figure 5.14b the sides of the triangle are 
aligned to show their relative length. 

 
 
 
 
 
 
 
 
Figure 5.14 a) Triangle. b) Lengths of sides of the triangle 

a) b) 

l1 

l2 

l3 

a) b) 

l1 
l2 
l3 
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Suppose, for example, that the system considers the length difference for line pairs 
(l1 l2) and (l2 l3) negligible and records the constraints “same-length: (l1 l2) (l2 l3)” and 
“longer: (l3 l1).” Using transitive closure the system finds that for consistency with 
“same-length: (l1 l2) (l2 l3),” lines l1 and l3 also need to have the same length. Hence, it 
removes the “longer” constraint and replaces it with “same-length (l1 l3)”. A similar 
mechanism is used for relative oval size. 

Clearly, the limitation of this mechanism is that it may interpret a series of very 
gradually increasing lines to be the same length, even if the length of the first and the last 
line in the sequence are significantly different. 

5.2.3 Example result of identifying all constraints 
Figure 5.15 shows a drawing of a military symbol with strokes segmented into 

geometric primitives. We label the primitives for convenience.  
 

 
Figure 5.15 Military symbol 

The table below shows 122 constraints that the system finds in the symbol. 
 

connects: (l4.p1 l3.p2) (l4.p2 l2.p2) (l4.p2 l9.p2) 
(l3.p1 l1.p1) (l3.p1 l8.p1) (l2.p1 l1.p2) 
(l2.p2 l9.p2) (l1.p1 l8.p1) (l9.p1 l7.p1) 
(l7.p2 l8.p2) 
meets: (l6.p1 l3.cp1) (l5.p2 l3.cp2) 
intersects: (l6 l5) 
horizontal: (l3) (l2) 
vertical: (l4) (l1) (l7) 
pos-slope: (l6) 
neg-slope: (l5) (l9) (l8) 
above: (l5 l9) (l3 l8) (l9 l2) (l8 l2) (l6 l9) 
right: (l4 l8) (l4 l9) (l9 l1) (l9 l7) (l9 l8) (l8 l1) 
(l7 l8) 
below: (l2 l9) (l9 l3) (l8 l3) 
left: (l1 l8) (l1 l9) (l9 l4) (l8 l4) (l8 l7) (l8 l9) 
(l7 l9) 
upper-right: (l5 l1) (l5 l8) (l4 l2) (l3 l1) (l6 l1) 
(l6 l8) 

upper-left: (l5 l4) (l3 l4) (l3 l9) (l1 l2) (l6 l4) 
lower-right: (l4 l3) (l4 l5) (l4 l6) (l2 l1) (l2 l8) 
(l9 l5) (l9 l6) 
lower-left: (l2 l4) (l1 l3) (l1 l5) (l1 l6) (l8 l5) 
(l8 l6) 
above-centered: (l6 l2) (l6 l3) (l6 l7) (l5 l2) (l5 l3) 
(l5 l7) (l3 l2) (l3 l7) (l7 l2) 
right-centered: (l4 l1) (l4 l7) (l7 l1) 
parallel: (l5 l8) (l5 l9) (l9 l8) 
perpendicular: (l5 l6) (l8 l6) 
same-length: (l5 l6) (l2 l3) (l1 l4) (l9 l1) (l9 l4) 
(l8 l1) (l8 l4) (l8 l9) (l7 l5) (l7 l6) 
longer: (l4 l5) (l4 l6) (l4 l7) (l3 l1) (l3 l4) (l3 l5) 
(l3 l6) (l3 l7) (l3 l8) (l3 l9) (l2 l1) (l2 l4) (l2 l5) 
(l2 l6) (l2 l7) (l2 l8) (l2 l9) (l1 l5) (l1 l6) (l1 l7) 
(l9 l5) (l9 l6) (l9 l7) (l8 l5) (l8 l6) (l8 l7) 

 



 51

5.3 Tension lines 
The next processing step is to find tension lines – the horizontal and vertical 

alignments of primitives in the symbol. The system starts by creating a list of tension 
points. The list includes all line centers and endpoints and points on the top, bottom, left, 
right, and center of the ovals. The horizontal or vertical alignment of two or more tension 
points defines a tension line (Figure 5.16). 

These alignments are found by a horizontal and vertical sweep through the list of 
tension points sorted by y and x coordinates respectively. Each group of consecutive 
tension points for which the maximum vertical (or horizontal) difference between point 
coordinates is less than MAX_ OFFSET corresponds to a different tension line. This 
means that the maximum misalignment of points on a tension line is MAX_OFFSET, 
consistent with the overall noise threshold in the system. 

 
 
 
 
 
 
 
 
Figure 5.16 Tension lines defined by groups of tension points 

Grey lines in Figure 5.17b show tension lines for the military symbol in Figure 
5.17a. 

 

    
 
 
Figure 5.17 a) Symbol b) Tension lines for the symbol 

a) b) 
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5.4 Obstruction 
After finding all constraints and tension lines the system proceeds to calculate 

obstruction. The obstruction value for each pair of primitives is roughly the number of 
other primitives between the pair. This section explains how obstruction values are 
calculated. 

Consider Figure 5.18. There are 4 lines between the lines l1 and l6.  
 
 
 
 
 
 
 
Figure 5.18 Four lines separate lines l1 and l6 

Notice, however, that it is not always clear whether a primitive is “between” a 
given pair. If we look at lines l1 and l3 in Figure 5.19, it is hard to decide whether line l2 
is between them. 

 
 
 
 
 
 
Figure 5.19 Is line l2 “between” lines l1 and l3? 

In Figure 5.19 line l2 does not completely separate l1 and l3, but it creates some 
obstruction. In this case we would like to assign an obstruction value that is somewhere 
between 0 (as, for example, in Figure 5.20a) and 1 (as in Figure 5.20b), so we use non-
integer obstruction values. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.20 a) Line l2 creates no obstruction for the pair (l1 l3). b) Line l2 is clearly 
between l1 and l3 

l1 l2 l3 

l4 
l5 

l6 

l1 
l2 

l3 

l1 

l2 

l3 

l1 
l2 

l3 

a) b)
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To calculate obstruction values for a pair of primitives, we define three special lines 
connecting them: 

 
Connecting line Examples 
A line connecting the centers of two 
primitives (cc) 
A line connecting the center of the 
first primitive to the closest point on 
the second primitive (co) 
A line connecting the center of the 
second primitive to the closest point 
on the first primitive (oc) 

 

 
The contribution of every remaining primitive pi in the symbol to the obstruction 

value for the pair (p1,p2) is an exponentially decreasing function of the distance between 
pi and each of the connecting lines. This distance is taken relative to the size s of the 
smaller primitive in the pair. 
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where s = min(size(p1), size(p2)) and α is set to 0.2. 

 
We examine obstruction calculation for the pair of lines (p1, p2) in Figure 5.21. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.21 Example lines 
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Figure 5.22 Positions of primitives relative to the connecting line cc 

Figure 5.22 shows the special line cc connecting the centers of lines p1 and p2. In 
this case s is equal to the length of p1, since it is the smaller of the two lines. Line p3 
intersects cc, so distance(p3, cc) / s = 0 and αdistance(p

3
, cc) / s = α0 = 1. Line p4 causes less 

obstruction: αdistance(p
4
, cc) / s = α0.5 = 0.45. When distance(p3, cc) exceeds s the exponent 

becomes greater than 1, and the obstruction will become less than α = 0.2, which is 
relatively small. 

The analysis is analogous for the connecting lines oc and co. We divide the 
obstruction values obtained for each of the connecting lines by 3, so that if some 
primitive intersects all three of them the total value would come to 1 (Figure 5.23): 

 
 
 
 
 
 
 
Figure 5.23 One line separates lines l1 and l2 

Notice, however, that there is a problem with defining obstruction in terms of the 
distance to the connecting lines. Consider the example in Figure 5.24: 

 
 
 
 
 
 
 
Figure 5.24 Line p3 should not obstruct p1 and p2 

Line p3 should not obstruct the pair (p1, p2), but it is very close to the connecting 
lines so the obstruction formula would give a value close to 1. To deal with this problem 
we remove from consideration all the primitives that are behind what we call the 
boundary infinite lines for the primitives p1 and p2. These lines narrow down the region 
where a primitive can obstruct the pair (p1, p2) ( 

p3 
p1 

p2 

l1 

l2 

l1 

l2 

p1 

s 

p2 

cc 
p3 

p4 

p5 > s 
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Figure 5.25): 
 
 

 
 
 
 
 

Figure 5.25 a) Pair of lines. b) Boundary lines for the pair (p1, p2) and the obstruction 
region 

The obstruction values are calculated only for primitives that are fully or partially 
contained in the obstruction region between the boundaries. For each of the primitives in 
a pair (p1, p2), the boundary is defined depending on the relative orientation of the 
primitive and the line cc connecting the centers of p1 and p2. The goal is always to keep 
the boundaries close to parallel. We define two cases, depending on the acute angle α 
between the primitive and the line cc: 

 
• α ≥ 72º: This means that the primitive is close to being perpendicular to the 

connecting line cc. The boundary in this case is simply the extension of the line: 
 
 
 
 

 
 
 
 
 
Figure 5.26 Boundary for the primitive p1 

• α < 72º: In this case the primitive is close to facing the other primitive in the 
pair with its endpoint. The boundary is perpendicular to the line cc and passes 
through the endpoint of the primitive p1, with a small offset (MAX_OFFSET). 
The offset is included so that lines connected to this endpoint would not be 
considered behind the boundary: 
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Figure 5.27 Boundary for the primitive p2 

 
For ovals, the boundary is perpendicular to the line cc. As in the previous case, 

there is a small offset (MAX_OFFSET) that exposes part of the oval, so that a line 
tangent or meeting the oval at that part would not fall behind the boundary:  

 
 
 
 
 
 
 
 
 
Figure 5.28 Boundary for the oval 

 

 
Figure 5.29 Military symbol 

The table below shows obstruction values for the symbol in Figure 5.29. As we can 
see, the obstruction value for the pair (l3, l2), for example, is 3.9. It is caused by the lines 
l7, l8, and l9, and somewhat by the lines l4 and l1. As defined by the obstruction 
equation, when two primitives touch, the obstruction will be zero, as for the pair (l3 l1), 
for example. 

 
 l1 l2 l3 l4 l5 l6 l7 l8 l9 
l1 0         
l2 0 0        
l3 0 3.9 0       
l4 4.8 0 0 0      
l5 3.2 4.7 0 1.5 0     
l6 2.5 4.7 0 2.3 0 0    

cc 

p2 

p1 boundary 
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l7 1.5 0.5 0.6 1.5 2.4 2.4 0   
l8 0 0.8 0 3.9 2.6 1.7 0 0  
l9 3 0 0.8 0 1.9 1.9 0 0 0 

 

5.5 Grouping 
This is the final processing step before relevance scores can be calculated for all the 

constraints. We support two grouping principles: connectedness and familiarity. The 
system produces candidate groups by segmenting the drawing into connected components 
and identifying previously learned symbols as drawing subparts. It then combines these 
groups into a hierarchy and merges any groups that share the same primitives. This 
section describes these steps in detail. 

5.5.1 Connected components 
Any two primitives that touch in some way are considered to be in the same 

connected component. To compute the components, the system constructs a graph in 
which nodes are primitives and an undirected edge exists for any pair of primitives 
constrained by “connects”, “meets”, “intersects”, “touches”, “overlaps”, or “tangent.” 
The system performs a depth-first search on this graph to find its connected components, 
which correspond to the connected components in the symbol. 

 

 
 
Figure 5.30 Examples of touching primitives 

The system identifies three connected components in Figure 5.30: 
 
Component 1: l6, l7, l4, l5, l3, l2, o1, o12 
Component 2: o11, o10 
Component 3: l9, l8 

5.5.2 Previously learned symbols 
To identify the second set of candidate groups the system looks for previously 

learned symbols as subparts of the new symbol. For each stored symbol it searches for a 
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mapping of primitives that makes its constraints a subset of all the constraints in the new 
symbol. 

 
 
 
For example, the primitives l7, l6, l8, and l5 in Figure 5.31b satisfy the constraints 

of the rectangle symbol in Figure 5.31a, given the mapping: (l1→l8) (l2→l5) (l3→l6) 
(l4→l7). 

 
 
 
 
 
 
 
Figure 5.31 a) Rectangle. b) New symbol 

Identifying previously learned symbols is a subgraph isomorphism problem on the 
symbol graphs, where the primitives are nodes and constraints are edges. We use 
Ullman’s algorithm to compute the isomorphism [Ullman, 1976]. It proceeds by trying 
one mapping pair at a time and checking edges given the pairs so far, until it fails or finds 
the compete mapping. For example, if the algorithm is looking for the rectangle from 
Figure 5.31a in the symbol in Figure 5.31b, it can try setting (l1→l8). The “horizontal l1” 
constraint is satisfied for l8, so it proceeds to set the mapping for l2, now trying to ensure 
that the mapped primitives in the new symbol satisfy the same constraint as l1 and l2 in 
the rectangle symbol, and so on. 

The running time of this algorithm is exponential in the number of primitives and 
linear in the number of previously learned symbols. We find that in practice it runs 
reasonably fast because most symbols have a small number of primitives and because 
mappings are quickly pruned when constraints involve only a few primitives. 

Previously learned symbols may be related. For example, an isosceles triangle is a 
subclass of a triangle in general. The isosceles triangle has more constraints. The system 
keeps track of the subclass relationships between the learned symbols in a multiple-
inheritance domain graph. Figure 5.32 shows such a graph for different kinds of triangles. 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.32 Domain graph for different types of triangles 

l9 l10 
l8 

a) b) 

l2 l4 
l3 

l5 

l1 

l7 
l6 
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The lines l8, l9, l10 in Figure Figure 5.31b would match all of these triangles. In 
such cases the system chooses the most specific interpretation, i.e. the one with most 
constraints. To achieve this, the matching process starts from the bottom of the domain 
graph. Once a set of primitives is matched to a symbol in the domain graph, there is no 
need to match this set to the ancestors of the symbol. We know that they are all 
guaranteed to match because they contain fewer constraints. 

 

 
Figure 5.33 Military symbol 

The system identifies previously learned cross and rectangle symbols as subparts of 
the symbol in Figure 5.33. 

5.5.3 Combining grouping factors 
The system combines candidate groups – connected components and previously 

learned symbols – into a group hierarchy. 
 
Figure 5.34 shows the group hierarchy for the symbol in Figure 5.33. 
 
 
 
 
 
 
 
 
 
Figure 5.34 Group hierarchy of the symbol in Figure 5.33 

If one group shares primitives with another group but cannot be its child or parent 
in the hierarchy, the two groups are merged into one. For example, in Figure 5.35 the 
system would find a triangle and a rectangle (the whole figure). They share the same 
primitive, so they will be merged into one group. 

 
 

Group g1 connected-component 

Group g2 symbol – cross 

Group g3 symbol – horizontal rectangle 

Group g4 other (the remaining primitives in the 
connected component) 
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Figure 5.35 Symbol with competing groupings 

This approach does not always produce the most salient grouping hierarchy. For 
example, Figure 5.36b shows the grouping hierarchy for the symbol in Figure 5.36a: 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.36 a) Symbol. b) Grouping produced by the system. c) Alternative grouping 

As a result of merging, the grouping in Figure 5.36b does not recognize the 
rectangle as a salient part of the symbol. Consequently, the system will not record, for 
example, constraints like “inside (circle rectangle)”, which would be more concise than 
specifying interactions of the circle with each of the primitives in the rectangle instead. 
The grouping in Figure 5.36c would be more appropriate. 

A potential approach to this problem would be to resolve competitions between 
groups by picking a “winner” that gets to keep the shared primitives, rather than merging 
the groups.  The winner could be defined, for example, as the group with the largest 
number of primitives. With that approach the system would produce a grouping shown in 
Figure 5.36c. 

5.5.4 Group constraints 
The system finds constraints between every two groups in the hierarchy that do not 

have an ancestor-descendant relationship. We currently support aspect ratio, orientation, 
relative position and relative size constraints, which are defined similarly to constraints 
on ovals and lines: 
 
• Aspect ratio: The aspect ratio of a group is defined by the aspect ratio of the group’s 

smallest-area bounding box (which does not have to be axis-parallel). This constraint 
is only identified for closed shapes. The group is “non-elongated” if the ratio of its 
length to its thickness is less than 1.5. Otherwise the group is elongated. 

 
Group constraint Example 

a) b) c) 
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Group constraint Example 
Non-elongated, Elongated  

 
 
 

 
• Orientation: The constraint applies only to elongated groups. The orientation of the 

group is defined by the orientation of the longer axis of the smallest-area bounding 
box of the group. So it is computed as defined for lines in section 5.2.1.1: 

 
Group constraint Example 
Horizontal, Vertical, Positive slope, 
Negative slope 

 
 
 
 
 

 
• Relative position: Position constraints are defined the same way as for lines and 

ovals in section 5.2.1 using the axis-parallel bounding box of the second group and 
the center of the first group (defined as the geometric center of the smallest-area 
bounding box). The position of the center relative to the bounding box determines the 
constraint (see the table below). 
 “Inside” and “inside-centered” constraints are identified only if the outer group is a 
closed shape. “Inside-centered” holds if one group is inside another and the difference 
between the center coordinates of the groups is less than MAX_OFFSET and satisfies 
the SIZE_TO_OBJECT_RATIO. The size of the group is defined as the length of the 
smallest-area bounding box of the group. “Inside” constraints hold in the same loose 
sense as we mentioned for lines and ovals. The primitives of the inner group are 
allowed to touch the boundary of the outer group as long as the system does not 
identify “intersects” constraints. 
 

Group constraint Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

below 

above upper-right upper-left 

left right 

lower-left lower-right 

right-centered left-centered 

below-centered 

above-centered 
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Group constraint Example 
Inside, Inside-centered  

 
 
 

 
 
 

 
 
Figure 5.37 Military symbol 

For the symbol in Figure 5.37 the system finds 4 group constraints: 
above-centered: (g2 g4) 
inside-centered: (g4 g3) 
elongated: (g3) 
horizontal: (g3) 

5.6 Assigning relevance scores 
A relevance score between 0 and 1 is computed for every constraint. This section 

explains how relevance scores are calculated based on: 
• Default scores 
• Obstruction 
• Tension lines 
• Grouping 

5.6.1 Default scores 
The default score for every constraint type is selected to approximate the relative 
perceptual relevance of the type: 
 

Constraints Default 
relevance 
score 

Connects 1.0 
Meets, Intersects, Tangent, Inside, Inside-centered 0.95 

g1 

g2 

g3 
g4 
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Touches, Overlaps 0.9 
Horizontal (lines), Vertical (lines) 0.8 
Positive slope, Negative slope, Position constraints (except inside), 
Parallel, Perpendicular 

0.7 

Horizontal (ovals), Vertical (ovals), Elongated, Non-elongated, Same-
length, Same-size 

0.6 

Longer, Larger 0.55 
We obtained these scores by ordering different types of constraints by their 

perceptually saliency, based on our introspection with various symbols, and assigning 
scores spread out in the interval between 0.5 and 1.0 according to this ordering. 

More accurate relevance ordering could potentially be obtained through looking at 
a large variety of symbols, using the same approach as in Goldmeier’s similarity 
experiments. In such an experiment the subjects would look at a symbol and two 
variations of it, produced by changing two constraints that we want to compare. The 
subjects would be asked which of the variations looks more similar to the original symbol 
and their choice would indicate which of the two compared constraints is less important. 
The constraint varied to produce the more similar symbol is the less perceptually relevant 
of the two, because changing it altered the perception of the symbol less. Section 3.1 
provides such an experiment for comparing the importance of the degree of curvature to 
the importance of line straightness (Figure 3.3). 

Three factors – obstruction, tension lines, and grouping – are used to increase and 
decrease the default scores of relative position, size, length, and orientation constraints. 
The score of all “touch” (i.e. connect, intersects, etc.), individual orientation, aspect ratio, 
and group constraints is not changed. As a result, these constraints will always remain in 
the description. In Chapter 7 on future work, we discuss why it may still be useful to rank 
these constraints by relevance and what could be done to enable the system to learn that 
in certain cases even these constraints may be irrelevant. 

Each of the three adjustment factors pushes the relevance of a constraint up or 
down depending on the strength and direction of influence δ of this factor. For the 
relevance score r, the new score r′  after adjustment will be: 
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This formula achieves an asymptotic approach towards both 0 and 1. 
The factors are applied in the order of: 
1. Obstruction 
2. Tension lines 
3. Grouping 

5.6.2 Obstruction 
An obstruction value is calculated for each pair of primitives, corresponding 

roughly to the number of primitives between the pair. The relevance of relative 
orientation, position, length, and size constraints for this pair will be decreased according 
to the amount of obstruction O(p1, p2). This is intended to mimic the psychological 
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observation that the more primitives are between a given pair the less we pay attention to 
the constraints for it. The influence constant for this factor is δob = –0 .15 O(p1, p2). 

5.6.3 Tension lines 
Tension lines represent salient alignments of the primitives in a symbol. This factor 

increases the relevance of the relative position, length, and size constraints violating 
which would prevent the formation of identified tension lines. We deal with cases where 
the pair of primitives supports either one or two tension lines:  
Relevance increased Example 
Affected constraints: Above- , below-, 
right-, and left-centered; Same-length; 
Same-size. 
Condition: The constraint is between two 
primitives that have endpoints on two 
parallel tension lines (formed by these or 
other primitives). 

 
 
 
 
 
 

Affected constraints: Above- , below-, 
right-, and left-centered. 
Condition: The constraint is between two 
primitives the centers of which are on the 
tension line with at least one more center 
point of another primitive.  

 
 
 
 
The relevance of the “right-centered” 
constraint for all of these pairs will be 
increased. 

 
The influence constant for tension lines is δtl = +0.5. 

5.6.4 Grouping 
Grouping affects relative orientation, position, length, and size constraints. The 

factor approximates people’s tendency to pay attention only to aggregate properties of the 
grouped primitives and to ignore the individual interactions of primitives in different 
groups. 

 The system decreases the relevance of the constraints between a pair of primitives 
if they belong to two different groups. Examples of such primitives are shown in Figure 
5.38 in bold: 

 
 
 
 
 
 
 
 
Figure 5.38 a) Two primitives in different connected components. b) Two primitives 
in previously learned shapes 

a) b)
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The influence constant for a pair of primitives in different groups when neither of 
the groups is a previously learned symbol is δdg = –0.2. If one or both of the groups is a 
previously learned shape we expect the attention to individual primitives to be even less 
so the constant is δds = –0.4. 

5.6.5 Example 
After applying the obstruction, tension lines, and grouping factors to adjust the 

default relevance scores, the system removes constraints with scores that ended up below 
the 0.5 threshold. 

 

 
 
Figure 5.39 Military symbol 

67 low-scoring constraints were removed from the initial list of 122 constraints for 
the symbol in Figure 5.39. Examples include: 

 
parallel: (l5 l8) 
same-length: (l7 l6) 
upper-right: (l6 l1) 
upper-left: (l5 l4) 

5.7 Removing redundancies 
The descriptions for previously learned symbols are available in the domain graph, 

so there is no need to list the constraints for those symbols in the new description. To 
produce the final description the system filters out all such constraints that pertain to the 
previously learned symbols that are part of the new symbol. 

The final description for the symbol in Figure 5.39 contains 26 constraints, after 
removing 29 constraints related to the descriptions of the cross and the rectangle: 
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GROUP HIERARCHY: 
Group g1 connected-component: l6 l3 l5 l4 l2 l1 l8 
l7 l9 
       Group g2 symbol - cross: l6 l5 
       Group g3 symbol - horizontal rectangle: l3 l4 
l2 l1 
       Group g4 other: l8 l7 l9 

 
CONSTRAINTS: 
elongated: (g3) 
above-centered: (g2 g4) 
inside-centered: (g4 g3) 
connects: (l4.p2 l9.p2) (l3.p1 l8.p1) (l2.p2 l9.p2) 
(l1.p1 l8.p1) (l7.p1 l9.p1) (l7.p2 l8.p2) 

meets: (l5.p2 l3.cp2) (l6.p1 l3.cp1) 
vertical: (l7) 
neg-slope: (l9) (l8) 
right: (l9 l7) (l9 l8) (l7 l8) 
upper-right: (l6 l8) 
upper-left: (l3 l9) (l8 l2) 
above-centered: (l5 l3) (l5 l7) (l3 l7) (l7 l2) (l6 l3) 
(l6 l7) 
right-centered: (l4 l7) (l7 l1) 
parallel: (l8 l9) 
same-length: (l4 l9) (l1 l8) (l8 l9) 
longer: (l3 l7) (l3 l8) (l2 l7) (l2 l9) (l9 l7) (l8 l7) 

 
Applying the mechanisms inspired by the studies on human perception and 

removing redundant information has allowed the system to reduce the number of 
constraints for this symbol from the initial 122 to 26. 

Figures below demonstrate the variations of the symbol in Figure 5.39 that would 
and would not fit the description: 

 
 
 
 
 
 
 
 
 
Figure 5.40 Examples of variations that would fit the description 

 
 
 
 
 
 
 
Figure 5.41 Variations that would not fit the description 

5.8 User interface 
We would like the user to be able to check descriptions output by the system 

without having to read the text. We have taken initial steps towards creating a suitable 
interface for this purpose. It combines straightening the symbol to enforce some of the 
constraints in the description and displaying the rest of the constraints using simple 
graphical notation similar to the conventions in geometry textbooks. 



 67

5.8.1 Straightening the symbol 
The system attempts to straighten the primitives in the symbol and enforce the 

constraints from the description. Currently, only orientation, aspect ratio, connects, and 
meets constraints are taken into account. The system proceeds through four steps: 

 
Step Example 
1. Straighten individual primitives: Ovals 
satisfying the “non-elongated” constraint are 
turned into perfect circles. Lines that the system 
identified as horizontal or vertical are rotated 
through the center to achieve perfect alignment 
with the axes. 

 

2. Align collinear primitives: Axis-parallel 
lines that have the same orientation and satisfy 
“connects” constraints are made collinear. 

 

3. Enforce connections: Endpoints of lines 
satisfying “connects” constraints are adjusted in 
three ways: 
• If both lines are not slanted, their endpoints 

are extended to the point of intersection. 
• If one of the lines is slanted, its endpoint is 

connected to the other. 
• If both lines are slanted, the connection point 

is set to be the midpoint. 

 

4. Enforce meets constraints: The endpoint of 
the line that should “meet” the other line is 
adjusted to be on that line in such a way that the 
ratio of distances from the endpoint of the first 
line to the endpoints of the second line is 
preserved. 

 

 
Steps three and four are performed for each constraint without consideration of 

whether the transformation may break other constraints, so it is possible that not all of 
these constraints will hold in the final drawing. In practice, however, this algorithm 
works reasonably well. Figure 5.42b shows the straightened version of the symbol in 
Figure 5.42a. 
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Figure 5.42 a) Original primitives. b) Straightened symbol 

We have also explored an alternative way to straighten the symbol using tension 
lines (though chose to keep the first method for the current system). For all tension points 
on a given horizontal tension line the system sets the same y coordinate (calculated from 
their average). The same happens for the x coordinates for the points on the vertical 
tension lines: 

 
 
 
 
 
 
 
 
 
 
Figure 5.43 Straightening the symbol using tension lines 

This mechanism usually produces more accurate results than the straightening 
algorithm described previously. Consider the example in Figure 5.44b for the symbol in 
Figure 5.44a. 

 

        
 

a) b) 

b) 
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Figure 5.44 a) Original primitives. b) Straightened symbol 

 
Unfortunately, the identified tension lines are sometimes contradictory. For 

example, several points from a short vertical line may appear on the same horizontal 
tension line because of the tolerance for noise. This makes straightening out much less 
reliable. Consider the result in Figure 5.45 below: 

 

    
 
 
Figure 5.45 a) Original primitives. b) Drawing straightened according to tension lines. 
c) The list of horizontal lines the system identified in the drawing 

We have not yet implemented a mechanism to remove such contradictions, so we 
mostly rely on the first method to straighten the symbol. 

5.8.2 Graphical notation 
In addition to straightening out the symbol we display some constraints graphically. 

For certain constraints, like same length and perpendicular, there are established 
conventions, like the ones used, for example, in geometry textbooks. For others we have 
created our own notation. We mark only the less obvious constraints, i.e. the ones that 
may not be evident from straightening the symbol: 

   
Constraint Notation Example 
Above-centered, 
below-centered 

Centers of the primitives 
marked by dots. Dashed-line 
through the centers 

  
Above, below, left, 
right 

Centers of the primitives 
marked by dots. Dashed arrow 
(axis-parallel) in the direction 
of the other primitive   

Upper-right, 
upper-left, lower-
right, lower-left 

Centers of the primitives 
marked by dots. Dashed line 
connecting the centers. 

 

a) 

a) b) 

TENSION LINES: 
Horizontal: l2.p1 l2.center l1.p1 l2.p2 l3.p1 
Horizontal: l6.p1 l5.p1 l3.center l1.center l6.center 
Horizontal: l5.center l6.p2 l4.p1 l5.p2 l4.center 
Horizontal: l3.p2 l4.p2 l1.p2 

c) 
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Perpendicular Square at the line intersection. 

 
Parallel Squares at the corners of the 

lines and a line perpendicular 
line to them 

 
Same-length Two short dashes through both 

lines 

 
Longer Three dashes on the longer 

line and two dashes on the 
shorter line 

 
 
All the constraints related to a given primitive are displayed whenever the user 

clicks on it. The drawing may get cluttered if constraints of all types are displayed at the 
same time, so we provide a set of check boxes to specify which constraints should be 
shown: 

 

 
 
Figure 5.46 Choosing constraint types to display 
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Chapter 6 Evaluation 
The ideal evaluation of the system would be to use the produced descriptions in a 

sketch recognition engine and test the recognition accuracy. The user would teach a 
symbol to the system and then draw multiple variations of it for the engine, noting false 
positives, false negatives, and the correct answers. As the recognition engine in the 
Design Rationale Group is still under development, the learning system had to be 
evaluated in isolation. 

Our primary goal was to test whether the system accurately generalized the 
symbols using knowledge about human perception of geometry. We wanted to verify that 
the system captured the same properties that a person would pay attention to when 
learning a new symbol. To do this, we conducted a user study where subjects were shown 
an unknown symbol and several variations of it and asked whether each variation should 
be recognized as the original symbol. We tested whether the users accepted and rejected 
the same variations that would be accepted or rejected using the system’s description. 

In some domains, people may use domain-specific information to decide what 
properties are important. For example, in electric circuit symbols we know that the lines 
representing wires can have arbitrary length. Because the system only uses geometric 
information, we picked symbols from military planning – a domain the subjects were not 
likely to be familiar with and where symbols have little resemblance to the actual objects 
they represent. 

We describe the procedure and the results of the study in the next sections. 

6.1 Data set and study procedure 
We used 9 symbols from the military planning domain (Figure 6.1). We chose the 

symbols to have a varying number of primitives and a varying number of contained 
known shapes. 

 

     
 

    
 
Figure 6.1 Test symbols 

We examined the descriptions produced for these symbols and designed 20 
variations for each one: 10 variations that would be accepted and 10 variations that would 
be rejected by the description produced by our system. Here is the procedure we used to 
do this:  

The goal in constructing the variations was to approximate a uniform distribution 
of the changes across different properties and across degrees of change. To produce each 
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variation we randomly picked to change one of the eight parts of the description 
(preferably without violating other constraints): 

 
• Touch constraints: connects, meets, intersects, etc. 
• Orientation 
• Relative position 
• Relative length and size 
• Relative orientation 
• Group aspect ratio 
• Group relative position 
• Number of primitives 
 

We also randomly chose either a large or a small degree of change.  
The original symbols and the variations were drawn with very low levels of noise 

(i.e. satisfying all constraints almost perfectly) so that people would not attribute the 
variations to sloppy drawing, but rather see them as routine changes to the original 
symbol. The variations that the system would accept or reject were randomly mixed. 
Appendix B presents the complete data set. 

The subjects completed the study online. The drawings were shown one-at-a-time, 
each drawing occupying the whole browser window. They had to vote on 20 variations 
for each of the 9 original symbols. Before voting on each variation, the subjects were 
shown the original symbol, so that they would remember what it looked like. They were 
asked whether the variation should be recognized as the original symbol. Only “yes” and 
“no” options were provided. The subjects could take as much time as they needed to 
decide on the answer. We also provided the option to look at the original symbol again by 
pressing the “Back” button on the browser, in case the subjects were uncertain. The order 
of the original symbols was randomized for each subject to average out potential order 
effects. We surveyed 33 subjects getting judgments for a total of 180 variations (20 for 
each symbol). 

6.2 Results 
Before evaluating the agreement of the system with human judgment it is important 

to see whether the subjects agreed with each other. For each variation, we recorded the 
majority answer and the percentage of people who gave that answer (majority 
percentage). The chart in Figure 6.2 gives an assessment of the agreement levels. 

The y-axis shows the proportion of the total of 180 variations for different levels of 
majority percentage on the x-axis. For almost 40% of the variations the subjects had high 
agreement – the majority percentage was above 90%. On more than half of data set the 
majority percentage was higher than 80%. Appendix B gives the detail on the votes and 
majority percentages for each variation in the data set. 
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Figure 6.2 Levels of agreement for different variations 

The chart shows that there were still a substantial number of cases (more than a 
third) where the subjects did not reach agreement, i.e. the opinions were strongly divided.  

Examples include: 
(The question was: should the variation be recognized as the original symbol?) 
 
Original symbol: Variation:  Original symbol:  Variation: 

      
    Yes: 47%     Yes: 50% 
 
Original symbol: Variation:  Original symbol: Variation: 

      
    Yes: 53%     Yes: 44% 
 
Figure 6.3 Variations that caused divided opinions. 

We think that it is reasonable to expect divided opinions in some cases. The degree 
of perceptual similarity is a continuous property, yet we were forcing the subjects to 
make a binary decision. Subjects may differ on the exact threshold for when they 
consider a variation to be dissimilar enough from the original symbol to be rejected. 

For such borderline cases, it makes less sense to evaluate the performance of the 
system (i.e. level of agreement with people) since people did not even agree with each 
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other. Hence, we report the results not only for the complete data set, but also for the 
subsets of variations with high agreement (with majority ≥ 80% and majority ≥ 90%). 

The chart in Figure 6.4 shows the evaluation results. We measured the proportion 
of times that the system agreed with the majority answer. For the whole data set the 
system achieved 77%. For the subset of the variations with higher intra-subject 
agreement (majority percentage ≥ 80%) the system achieved 83%. For an even smaller 
subset of data with the highest agreement (majority percentage ≥ 90%) the performance 
was 95%. Notice that the baseline performance is 50%. The system would agree with 
people half of the time if it guessed randomly. 
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Figure 6.4 Percentage of cases where the system agreed with the majority answer 

The system captures enough relevant information about the symbol to perform 
significantly above chance level. Yet there is still a lot of room left for improvement. In 
the next section we analyze the kinds of mistakes the system makes in order to assess 
what would be required to achieve better performance. 

Notice that the data set was created to reflect variations that are produced by 
picking changes uniformly over all properties in the description. This set in not 
necessarily representative of the variations that people would be likely to produce when 
intending to draw the original symbol in a sketch. So we do not think these results are an 
accurate assessment of recognition accuracy. This is only an assessment of agreement in 
perceptual judgment. To measure potential recognition performance, a better way to 
construct the data set would be by showing people the original symbol and then asking 
them to draw it several times.  

6.3 Analysis of disagreements 
The system has produced both false positives and false negatives, though there 

were significantly fewer false positives. 
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6.3.1 False positives 
These are cases where the variation fit the description, but the majority vote was 

not to recognize it as the original symbol. These cases fall into two categories. 
In the first category the variation introduces connects, intersects, meets, or touches 

constraints that originally were not in the description. For example: 
 
Original symbol: Variation:  Original symbol: Variation: 

        
    No: 72%     No: 89% 
 
Figure 6.5 Variations accepted by the description but rejected by the majority of the 
subjects 

These examples fit the description, because the symbols are represented in the 
system by specifying which constraints should hold, rather than which constraints should 
not hold. Yet the majority of the subjects reject the variation because, perceptually, the 
symbol is altered significantly. To correct this kind of error the system would have to be 
extended to support “must-not” constraints. We think that these constraints would only be 
relevant for “touch” properties, like “connects”, “meets”, “intersects”, “touches”, 
“overlaps”, etc., since these are most perceptually salient and can strongly alter the 
perception of the symbol. 

The second type of disagreement is caused by the lack of explicit symmetry 
detection in the system. The variation below satisfies the description of the original 
symbol, even though it lacks symmetry. The majority, however, rejects the example 
(though this is only a slight majority). 

 
Original symbol: Variation: 

   
    No: 53% 
 
Figure 6.6 Variation that fits the description but is rejected by the majority 

In summary, false positives arise because the system does not capture some 
properties of the symbol that have high perceptual relevance. The system does not look 
for these properties due to limited description vocabulary. 
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6.3.2 False Negatives 
80% of the errors the system made were false negatives. These examples represent 

cases where variations of the symbol violate some description constraints, but the 
majority of the subjects still consider them similar enough to the original symbol to be 
recognized.  

One type of false negatives occurs when the aspect ratio of a subpart of the symbol 
is changed, but people do not consider this change of the symbol significant: 

 
Original symbol: Variation:  Original symbol: Variation: 

        
    Yes: 89%     Yes: 92% 
 
   a)      b) 
 
Figure 6.7 Changes in aspect ratio 

Figure 6.7a, for example, is described by the system as having a “vertical 
rectangle,” hence the rectangle in the variation of the symbol does not fit the description. 
Yet, for the subjects, it seems sufficient to just see a rectangle, regardless of the aspect 
ratio. We think that this effect may be related to the number of primitives in the symbol. 
When there is a lot of other detail in the symbol, people seem to generalize the 
representation on the composing sub-shapes more. The system could attempt to mimic 
this by recording more general versions of the previously learned shapes from the domain 
graph (Figure 6.8), if symbol containing the shape has a large number of other primitives. 
Currently the system always prefers the most specific versions. 

  
 
 
 
 
 
 
 
 
Figure 6.8 Domain graph that the system searches for previously learned shapes 

Another type of false negatives we encountered were a few cases where the system 
found “longer” constraints to be important and included them in the description, yet the 
majority of the subjects accepted the variation with these constraints violated, for 
example: 

 
 

rectangle 

vertical rectangle horizontal rectangle 
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Original symbol: Variation rejected by the system: 

   
    Yes: 84% (the majority accepted the variation) 
 
Figure 6.9 Changes in relative length constraints 

Notice that in the variation of the symbol, the small top part of the symbol is no 
longer horizontally elongated as it is in the original symbol. This causes it to violate the 
“longer” constraints that were established between the “top” and the “sides” of this part. 

Perceptually this is similar to the aspect ratio problem that we described for the 
previous example. The difficulty, however, is that the system does not identify a separate 
aspect ratio property for the top part of the symbol that it could reason with. It also does 
not have a mechanism to downgrade importance of individual “longer” constraints in one 
part of the symbol due to the rest of the symbol containing a lot of primitives. These are 
important problems to investigate in the future.  

The system also made one error related to position constraints: 
 
Original symbol: Variation rejected by the system, but accepted by majority: 

   
    Yes: 74% 
 
Figure 6.10 Changes in position constraints 

The system records, for example, that top-left side of the diamond in the original 
symbol is to the lower-left of the short vertical line above. When the two vertical lines are 
moved apart enough, the constraint no longer holds. The perceptual change is not very 
significant, however. It would have been enough to record that the vertical lines are 
above the top sides of the diamond. 

All the examples above are composed of several high-level shapes: diamond, oval, 
rectangle, etc. It seems that the most perceptually relevant feature is the combination of 
these high-level shapes, and people pay less attention to the individual detail. The system 
needs to include more mechanisms for decreasing relevance of constraints on the 
primitives that constitute detail, when multiple previously learned shapes are present.  
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Chapter 7 Future Work 
This chapter describes our ideas on improving the system’s descriptive ability, 

achieving better relevance ranking by using domain information, and alternative 
approaches to the user interface. 

7.1 Extending the system’s descriptive ability 
To represent a larger variety of symbols the system would need support for arcs, 

curved elements, and symbols that contain an arbitrary number of certain elements (like a 
resistor, or a dashed line). In addition, many symbols could be described more concisely 
if the system used higher-level constraints that include more than two primitives. The 
next sections outline potential steps towards reaching these goals. 

7.1.1 Arcs 
Incorporating arcs into the system would require defining a set of constraints that 

correspond to singular and non-singular arc properties. The table below shows a possible 
list of such properties: 

 
Properties (singular ones shown in bold) Example 
Arc angle: half-arc, >half-arc, <half-arc  

 
 
 

Arc orientation: top, top-right, right, 
bottom-right, bottom, bottom-left, left, 
top-left 

 
 
 
 
 
 

 
Constraints defined similar to those for lines and ovals could also be used with 

arcs: 
• Connects, meets, intersects, touches. 
• Position constraints (referring to the center of the bounding box): above, right, 

left, below, upper-right, upper-left, lower-left, lower-right, above-centered, 
below-centered, left-centered, right-centered, inside, inside-centered 

• Same-size, larger (referring to largest dimension of the bounding box) 
Parameterized constraints like meets, connects, intersects, and touches would refer 

to the points on the arc in the table below: 
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Part Notation Example 
First point on the arc in clockwise 
direction 

cw1 

Any point between cw1 and the 
center of the arc curve 

cw1c 

Center of the arc curve C 
Any point between cw2 and the 
center of the arc curve 

cw2c 

Second point on the arc in 
clockwise direction 

cw2 

 
 
 

 
The descriptive power of these properties and constraints would have to be tested 

on a variety of symbols. 

7.1.2 Curve representation 
A large number of symbols contain spirals, waves, and other curved elements: 
 
 
 
 
 
 
 
Figure 7.1 Symbols with curved elements 

In many systems curves have been represented by parameters that do not easily 
capture the important perceptual characteristics. For example, consider Bezier curves. 
The small circles in Figure 7.2 shows the four Bezier control points for the drawn curve. 
Two of them do not lie on the curve and it would be hard for a person to judge the 
positions of these points when looking at a given curve. 

 

  
 
Figure 7.2 Control points for the Bezier curve 

Bezier control points are not the perceptually salient elements of the curve. The 
positions of the endpoints, the existence of an inflexion point, and the “angular distance” 
traversed by the two segments separated by the inflexion point are probably more 
perceptually relevant. A description in these terms would capture the perceptual 
similarity between different curves in Figure 7.3, even though some of them are 
composed from more than one Bezier curve segment or from two arcs: 

cw1 

c 
cw1c 

cw2 

cw2c 
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Figure 7.3 Perceptually similar curves 

Future work should explore perceptually salient properties of curves to create a 
qualitative vocabulary for describing curved symbols. 

7.1.3 Arbitrary number of elements 
Symbols often have components that can be repeated an arbitrary number of times: 
 
 
 
 
 
 
 
Figure 7.4 Symbols with varying number of primitives. a) Resistor symbol. b) Symbol 
from military planning. c) Symbol for ground or surface in mechanical engineering 

Learning such configurations presents two challenges. The system first has to be 
able to identify a group of repeated components and, second, decide whether an arbitrary 
number of them is acceptable. Goldmeier’s studies provide some hints on how this may 
be done. He distinguishes the geometric elements perceived by people as either material 
or form. Consider two experiments in Figure 7.5. Which of the b and c is more similar to 
a? 

 
 
 
 
 
 
 
 
 
Figure 7.5 Which of b and c is more similar to a? 

Even though uniform scaling of the symbol should not, supposedly, affect 
similarity, most of the subjects pick the example where the line width or the size of the 
small triangles remains the same (answers b and c respectively), i.e. the symbol that is not 
a uniformly scaled version of the original. Goldmeier argues that the lines of a certain 

a) b) c) 

a) 

b) c) 

a) 

b) c) 
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width or the small triangles are perceived as material that makes up a larger shape (form). 
For the symbol to remain perceptually more similar, he claims that “the form is best 
preserved by proportional enlargement; material properties are best preserved by keeping 
the measurements of the material elements constant” [Goldmeier, 1972] However, ask 
yourself the same question for Figure 7.6: 

 
 
 
 
 
 
 
 
 
Figure 7.6 Which of b and c is more similar to a? 

Most subjects choose b. In this case smaller triangles are not considered material. 
The difference between the cases when repeated elements can be viewed as material and 
when they should be viewed as form is best illustrated by Figure 7.7: 

 
 
 
 
 
 
 
 
Figure 7.7 Which of b and c is more similar to a? 

In the first experiment most subjects have picked c, treating the lines as material. 
However, in the second experiment they chose b.  The presence of exactly three lines is 
perceived as a salient part of the form (structure) of the symbol. 

According to Goldmeier, when the repeated elements are small compared to the 
size of the symbol and there is a large number of them, people start perceiving them as 
material rather than form and hence become insensitive to the variation in number of such 
components. The difficult task is defining quantitatively the terms “small relative to the 
symbol size” and “large number of elements.” 

7.1.4 Higher-level constraints 
Due to the current restriction of the vocabulary to binary constraints, the system 

cannot capture certain constraints, even though they are perceptually salient. For 
example, the system does not represent symmetry constraint, which has been sown by 
Goldmeier to be a very important property [Goldmeier, 1972]. 

 
 
 

a) 

b) c) 

a) 

b) c) 

a) 

b) c) 



 82

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8 Symmetrical symbol 

Tension lines, however, increase the relevance of some constraints violating which 
would break the symmetry. This sometimes helps implicitly capture the horizontal or 
vertical symmetry requirement. In Figure 7.8, for example, the tension line heuristic 
causes the system to increase the relevance of constraints “same-length: (l1 l2) (l3 l4)” 
and “above-centered (15 l6).” In general, any two primitives symmetrical across the 
vertical or horizontal axis will form one or more tension lines, helping increase the 
relevance of constraints on their relative position and sometimes length: 

 
 
 
 
 
 
Figure 7.9 Symmetrical segments form tension lines 

However, currently there is no mechanism to require that the two elements should 
be equidistant from the symmetry axis or that they should have the same absolute slope. 
Hence, the system produces the same constraints for the symmetrical and non-
symmetrical symbols in the pair of examples below, missing the fact that there is an 
important perceptual difference between them. 

 

           
 
Figure 7.10 Pairs of symbols that would result in the same description 

l6 

l5 

l4 l3 

l2 l1 
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In addition to the non-binary symmetry constraint, the system would also benefit 
from adding constraints like interval equality between pairs of lines and alignment of 
several endpoints of different primitives. With these constraints symbols like the ones in 
Figure 7.11 could be described more concisely: 

 
 
 
 
 
 
 
Figure 7.11 a) Symbol requiring interval equality constraints. b) Symbols requiring 
alignment constraints 

The only way the system currently allows constraining more than two primitives at 
a time is through group constraints. Improving grouping would help identify more 
accurate global constraints. The system supports only two grouping principles: 
connectedness and familiarity of shape. Proximity, similarity, continuity, and closure 
factors identified by gestalt psychologists [Wertheimer, 1923] need to be added to better 
approximate perceptually relevant grouping of the primitives within the symbol. Drawing 
order may possibly provide additional clues for grouping since we think that people will 
be more likely to draw perceptually salient components consecutively, without overlap. 

7.2 Knowledge of Other Symbols in the Domain 
Using knowledge about other symbols in the domain would help the system 

produce more adequate descriptions. Consider a simplified example, for the sake of 
explanation: assume that the description produced for the capacitor symbol in Figure 
7.12a below did not include the constraint “same-length l2 l3.” 

 

 
Figure 7.12 a) Battery symbol. b) Capacitor symbol 

The subsequently presented battery symbol in Figure 7.12b would then match the 
capacitor description. The system should compare descriptions of different symbols in the 
domain and ensure that they have different descriptions by updating them appropriately. 
The correct action to take in this case would be to include the constraint “same-length l2 
l3” to the capacitor description and “longer l3 l2” to the battery description. However, the 
challenge is that this is not the only constraint that distinguishes these symbols – there is 
also the relative length of lines l1 and l4, for example. Which distinguishing constraints 
should the system choose to include in the updated descriptions? We believe that it is 
important to explore the use of perceptual ranking of constraints for making such choices. 

l1 l2 
l3 

l4 l1 
l2 l3 

l4 

a) b) 

a) b) 
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Note, for example, that the obstruction value for lines l4 and l1 is higher than for lines l2 
and l3, hence the system would rank constraints between lines l2 and l3 higher on 
perceptual importance. It is those constraints that are better candidates for inclusion in the 
description. 

7.3 Improved user interface 
We have only started to explore the user interface for verifying the correctness of 

the descriptions produced by the system. We have experimented with displaying the 
constraints graphically, so that the user does not have to read the description. This 
method still requires a lot of concentration from the user and the notation quickly gets 
cluttered when the symbol has a lot of primitives. 

The next section describes an alternative approach to checking produced 
descriptions that is based on variations of the symbol. 

7.3.1 Automatic generation of potential “near misses” 
Instead of displaying constraints graphically, the system could show different 

variations of the symbol that fit and do not fit the description and ask the user to accept or 
reject them. Then it would modify the description based on the responses. 

 
 
 
 
 
Figure 7.13 Military planning symbol 

In Figure 7.13, the horizontal elongation of the rectangle and the oval may or may 
not be a required constraint. One way to verify that would be to ask the user whether the 
following examples should be recognized as the symbol: 

 
 
 
 
 
 
 
Figure 7.14 Examples with questionable constraints removed 

The system would remove the constraints that are violated in the accepted examples 
and include missing constraints that differentiate the original symbol from the rejected 
examples. 

The space of variations may be too large to explore exhaustively. For example, if a 
description contains 30 constraints and the option is to drop or keep each constraint, there 
may be up to 230 ~ 1 billion variations. Even if we assume that it is enough to check each 
constraint individually, the user would still have to look at 60 symbols. The main 
challenge is to generate only the few variations that the system could benefit from, i.e. the 
variations that explore the constraints that the system is “not sure” about. 
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The system could take advantage of relevance scores to identify such constraints, as 
they approximate the degree of perceptual salience. For example, there is no need to 
check the constraints that have a high score (like connects or meets). Removing those 
constraints would most likely produce a symbol that is significantly different and that the 
user would reject. That would give no new information to the system. On the other hand, 
varying constraints with scores near the filtering threshold is more likely to provide “near 
misses” that the system can learn from, because its judgment may differ from that of the 
user. 

7.4 Relevance ranking for recognition robustness 
A generic recognition engine will use the system’s descriptions to identify symbols 

in user’s sketches. If relevance scores were included in the description, the engine could 
use them for error-tolerant matching, making the recognition potentially more robust in 
the cases when the description is too constraining. Consider, for example, one of the 
constraints for the symbol in Figure 7.15. 

 

 
 
Figure 7.15 Military symbol 

The system decides that line l8 should be longer than l6 and l7. Now assume that it 
is in fact incorrect, i.e. the user still wants the system to recognize the variations of this 
symbol where these constraints do not hold. The system gave these constraints relevance 
scores of 0.55, which are only slightly above the filtering threshold and lower than the 
scores of most other constraints (e.g. connects has a score of 1.0 and meets has a score of 
0.9). Error-tolerant recognition would proceed by computing the matching error by 
summing the number of discrepancies between the input sketch and the constraints in the 
description, weighted by their relevance scores. Any input with a total error below a 
certain threshold would be considered to fit the description. When the description is 
incorrectly overconstrained, the engine may still recognize the input symbol, as long as 
the constraints that are required by the description but are missing from the input have 
low relevance.  
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Chapter 8 Conclusion 
We have presented a system for learning shape descriptions from a single example 

of a symbol. By explicitly putting in knowledge about human perception we attempt to 
guide the generalization process. The generalization power derives from two sources: 

 
1. Qualitative vocabulary of constraints based on perceptual singularities: 

 
The vocabulary contains singular and non-singular terms, reflecting the property 

values that people attend to (singularities) and aggregating values that they ignore (non-
singularities). This aggregation is an important initial generalization step. 

In spite of the qualitative nature, the vocabulary is adequate for describing a large 
variety of symbols because it captures perceptually salient properties that we expect to be 
the basis for creation of graphical languages. 
 
2. Perceptually inspired mechanisms for ranking constraints by relevance: 

 
Constraints are assigned default relevance scores, based on their average perceptual 

importance. In addition, obstruction, tension lines, and grouping mechanisms that take 
into account the particular configuration of the primitives in the symbol cause these 
scores to be increased or decreased. These mechanisms reflect the observation that people 
pay attention to global properties of the symbol and that perceptual relevance of 
constraints is context-dependent.  

 
As shown on several examples the system is capable of adequately describing 

complicated symbols with a lot of detail. We measure the success of the system in 
learning a new symbol by how well it captures the properties that people would pay 
attention to. The user study has shown that the system performs reasonably (83%) on the 
examples where the subjects agreed among each other.  

Future work on the system would include improving its descriptive ability by 
providing support for curves and symbols with an arbitrary number of elements and by 
extending the constraint vocabulary to support higher-level constraints like symmetry, 
interval equality, and multiple alignments. As we have shown, knowledge about 
perception may provide further clues on how to achieve these extensions.  
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Appendix A 
Initial Constraints for the Symbol 

 

 
 
connects:(l5.p2 l4.p2) (l5.p1 l2.p2) (l5.p2 l6.p1) (l4.p2 l5.p2) (l4.p1 l3.p2) (l4.p2 l6. 
p1) (l3.p2 l4.p1) (l3.p1 l1.p1) (l2.p2 l5.p1) (l2.p1 l1.p2) (l1.p1 l3.p1) (l1.p2 
 l2.p1) (l8.p1 l7.p2) (l8.p1 l6.p2) (l7.p2 l8.p1) (l7.p2 l6.p2) (l6.p1 l5.p2) (l 
6.p1 l4.p2) (l6.p2 l8.p1) (l6.p2 l7.p2) 
horizontal:(l3) (l2) (l6) 
vertical:(l1) 
pos-slope:(l5) (l8) 
neg-slope:(l4) (l7) 
above:(l7 l6) (l6 l8) 
right:(l5 l1) (l4 l1) (l8 l1) (l7 l1) 
below:(l8 l6) (l6 l7) 
left:(l1 l5) 
upper-right:(l5 l2) (l4 l2) (l3 l1) (l8 l2) (l7 l2) (l7 l5) (l6 l2) (l6 l5) 
upper-left:(l4 l6) (l4 l8) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8) (l1 l2) (l1 l8) 
lower-right:(l5 l3) (l4 l3) (l2 l1) (l8 l3) (l8 l4) (l7 l3) (l6 l3) (l6 l4) 
lower-left:(l5 l7) (l2 l4) (l2 l6) (l2 l7) (l2 l8) (l1 l3) (l1 l4) (l1 l7) 
above-centered:(l4 l5) (l3 l2) (l7 l8) 
right-centered:(l8 l5) (l7 l4) (l6 l1) 
perpendicular:(l5 l7) (l8 l7) (l7 l5) (l7 l8) 
same-length:(l5 l1) (l5 l4) (l4 l1) (l4 l5) (l3 l2) (l2 l3) (l1 l4) (l1 l5) (l8 l7) (l7 l8) 
longer:(l5 l7) (l5 l8) (l4 l7) (l4 l8) (l3 l1) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8) 
(l2 l1) (l2 l4) (l2 l5) (l2 l6) (l2 l7) (l2 l8) (l1 l7) (l1 l8) (l6 l1) (l6 l4) 
(l6 l5) (l6 l7) (l6 l8) 
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Initial Constraints for the Symbol 
 

 
 
connects:(l6.p1 l5.p2) (l6.p2 l4.p2) (l6.p2 l3.p2) (l5.p2 l6.p1) (l5.p1 l4.p1) (l5.p1 l1.p2) (l4.p2 
l6.p2) (l4.p1 l5.p1) (l4.p2 l3.p2) (l4.p1 l1.p2) (l3.p2 l6.p2) (l3.p2 l4.p2) (l3.p1 l2.p2) (l2.p2 l3.p1) 
(l2.p1 l1.p1) (l1.p2 l5.p1) (l1.p2 l4.p1) (l1.p1 l2.p1) (l10.p1 l9.p2) (l10.p1 l7.p1) (l9.p2 l10.p1) 
(l9.p2 l7.p1) (l7.p1 l10.p1) (l7.p1 l9.p2) 
meets:(l7.p2 l8.c) 
non-elongated:(o11) 
horizontal:(l4) (l2) (l8) 
vertical:(l3) (l1) (l7) 
pos-slope:(l10) (l6) 
neg-slope:(l5) (l9) 
above:(l4 l5) (l4 l6) (l2 l6) (l2 l10) (l10 l4) (l10 l6) (l10 l8) (o11 l6) (o11 l10) (l9 l4) (l9 l5) (l9 l8) 
(l8 l6) (l7 l6) 
right:(l3 l7) (l10 l1) (o11 l1) (l9 l1) (l8 l1) (l7 l1) 
below:(l6 l2) (l6 l4) (l6 l10) (l5 l2) (l5 l4) (l4 l10) (l10 l2) (l9 l2) (l8 l10) 
left:(l1 l7) (l10 l3) (o11 l3) (l9 l3) (l8 l3) (l7 l3) 
upper-right:(l10 l5) (l10 l7) (o11 l5) (o11 l9) (l3 l4) (l3 l5) (l3 l6) (l3 l8) (l2 l1) (l2 l5) (l2 l9) (l8 
l5) (l7 l5) 
upper-left:(l2 l3) (l1 l4) (l1 l5) (l1 l6) (l1 l8) (l9 l6) (l9 l7) 
lower-right:(l5 l1) (l10 o11) (l4 l1) (l4 l9) (l3 l2) (l3 l9) (l3 l10) (l3 o11) (l8 l9) (l7 l9) (l6 l1) (l6 
l7) (l6 l8) (l6 l9) (l6 o11) 
lower-left:(l5 l3) (l5 l7) (l5 l8) (l5 l9) (l5 l10) (l5 o11) (l4 l3) (l1 l2) (l1 l9) (l1 l10) (l1 o11) (l9 
o11) 
above-centered:(l2 l4) (l2 l7) (l2 l8) (l2 o11) (o11 l4) (o11 l7) (o11 l8) (l8 l4) (l7 l4) (l7l8) 
right-centered:(l6 l5) (l3 l1) (l10 l9) 
parallel:(l5 l9) (l10 l6) 
same-length:(l6 l5) (l5 l6) (l4 l2) (l3 l1) (l2 l4) (l1 l3) (l10 l8) (l10 l9) (l9 l8) (l9 l10) (l8 l9) (l8 
l10) 
longer:(l6 l8) (l6 l9) (l6 l10) (l5 l8) (l5 l9) (l5 l10) (l4 l5) (l4 l6) (l4 l7) (l4 l8) (l4 l9) (l4 l10) (l3 
l2) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8) (l3 l9) (l3 l10) (l2 l5) (l2 l6) (l2 l7) (l2 l8) (l2 l9) (l2 l10) (l1 
l2) (l1 l4) (l1 l5) (l1 l6) (l1 l7) (l1 l8) (l1 l9) (l1 l10) (l7 l5) (l7 l6) (l7 l8) (l7 l9) (l7 l10) 
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Appendix B 
This appendix describes the test set that was used for the evaluation of the system. 

For each symbol (at the top of the page) there are 20 variations, shown in the same order 
as they were presented to the subjects. For each variation the subjects were asked whether 
it should be recognized as the original symbol. The subsequent table shows the answer 
according to the description produced by the system and the answer given by the 
subjects. It also includes the information on the majority percentage. The entries for the 
variations on which the subjects disagreed with the system are highlighted. 
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  Symbol 1 
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System: YES YES NO YES 

Majority: YES YES YES YES 

Majority %: 97% 89% 89% 100% 

     

System: YES NO NO YES 

Majority: YES NO NO YES 

Majority %: 66% 63% 53% 89% 

     

System: NO NO YES NO 

Majority: NO NO NO NO 

Majority %: 50% 92% 89% 76% 

     

System: YES YES NO NO 

Majority: YES YES YES NO 

Majority %: 74% 89% 55% 92% 

     

System: NO YES NO YES 

Majority: YES YES YES YES 

Majority %: 92% 84% 89% 79% 
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 Symbol 2 



 96

 
 

System: YES NO YES NO 

Majority: YES NO YES NO 

Majority %: 100% 76% 93% 73% 

     

System: YES NO NO YES 

Majority: YES NO NO YES 

Majority %: 71% 56% 54% 80% 

     

System: YES YES YES NO 

Majority: YES YES YES NO 

Majority %: 78% 76% 85% 83% 

     

System: NO NO YES NO 

Majority: NO NO YES NO 

Majority %: 80% 90% 100% 76% 

     

System: NO YES YES NO 

Majority: YES YES YES YES 

Majority %: 93% 73% 85% 59% 
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 Symbol 3 
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System: YES YES NO YES 

Majority: YES YES YES YES 

Majority %: 95% 95% 75% 95% 

     

System: NO NO YES NO 

Majority: YES YES YES NO 

Majority %: 83% 75% 100% 85% 

     

System: NO YES YES NO 

Majority: NO YES NO YES 

Majority %: 83% 85% 53% 90% 

     

System: NO NO YES YES 

Majority: NO NO YES YES 

Majority %: 75% 93% 90% 93% 

     

System: YES NO YES NO 

Majority: YES NO NO NO 

Majority %: 90% 93% 50% 98% 
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 Symbol 4 
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System: YES NO NO YES 

Majority: YES YES YES YES 

Majority %: 95% 79% 50% 84% 

     

System: YES NO YES NO 

Majority: YES YES YES NO 

Majority %: 84% 84% 100% 61% 

     

System: YES NO YES NO 

Majority: YES NO YES YES 

Majority %: 84% 55% 84% 63% 

     

System: NO YES NO YES 

Majority: NO YES YES YES 

Majority %: 97% 84% 82% 97% 

     

System: NO NO YES YES 

Majority: NO NO YES YES 

Majority %: 92% 100% 89% 74% 
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 Symbol 5 



 102

 

System: YES NO YES NO 

Majority: YES NO YES NO 

Majority %: 90% 53% 98% 88% 

     

System: YES YES NO YES 

Majority: YES YES NO YES 

Majority %: 78% 68% 73% 73% 

     

System: NO YES NO NO 

Majority: YES YES NO NO 

Majority %: 50% 73% 73% 90% 

     

System: NO YES NO NO 

Majority: YES YES NO YES 

Majority %: 85% 80% 100% 78% 

     

System: YES NO YES YES 

Majority: YES NO YES YES 

Majority %: 90% 85% 53% 78% 
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 Symbol 6 
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System: NO NO YES NO 

Majority: YES YES YES YES 

Majority %: 79% 92% 82% 64% 

     

System: NO YES NO YES 

Majority: NO YES YES YES 

Majority %: 100% 97% 87% 95% 

     

System: NO YES YES NO 

Majority: NO YES YES NO 

Majority %: 79% 97% 79% 95% 

     

System: NO YES YES YES 

Majority: NO YES YES YES 

Majority %: 69% 92% 97% 69% 

     

System: NO YES YES NO 

Majority: YES YES YES NO 

Majority %: 72% 79% 59% 95% 
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 Symbol 7 
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System: NO NO YES NO 

Majority: YES YES YES YES 

Majority %: 62% 82% 97% 85% 

     

System: YES NO NO YES 

Majority: YES NO NO NO 

Majority %: 79% 97% 92% 72% 

     

System: NO YES NO YES 

Majority: NO YES NO YES 

Majority %: 79% 79% 97% 100% 

     

System: YES YES NO YES 

Majority: YES NO NO YES 

Majority %: 85% 51% 82% 79% 

     

System: NO NO YES YES 

Majority: NO YES NO YES 

Majority %: 95% 69% 59% 85% 
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 Symbol 8 
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System: NO NO NO NO 

Majority: NO NO NO YES 

Majority %: 67% 56% 92% 85% 

     

System: NO NO YES YES 

Majority: NO YES YES YES 

Majority %: 56% 90% 59% 95% 

     

System: NO YES YES YES 

Majority: YES YES YES YES 

Majority %: 64% 92% 85% 92% 

     

System: YES NO YES YES 

Majority: YES YES YES YES 

Majority %: 87% 82% 95% 92% 

     

System: NO YES NO YES 

Majority: YES NO NO YES 

Majority %: 74% 54% 79% 82% 
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 Symbol 9 
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System: NO NO YES NO 

Majority: NO NO YES NO 

Majority %: 73% 100% 97% 97% 

     

System: NO YES YES YES 

Majority: NO YES YES YES 

Majority %: 95% 86% 92% 62% 

     

System: YES NO YES YES 

Majority: YES NO YES NO 

Majority %: 95% 97% 89% 81% 

     

System: NO YES YES YES 

Majority: NO YES YES YES 

Majority %: 95% 86% 95% 95% 

     

System: NO NO NO NO 

Majority: YES NO YES NO 

Majority %: 84% 70% 70% 97% 
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