
Perceptually Based Learning of Shape Descriptions for Sketch Understanding

by

Olga Veselova

B.S. Computer Science
University of Washington, 2001

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of

Master of Science in

Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May 2003

© 2003 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: __
Department of Electrical Engineering and Computer Science

May 29, 2003

Certified by: ___
Randall Davis

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: __
Arthur C. Smith

Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

 2

Perceptually Based Learning of Shape Descriptions for Sketch Understanding

by

Olga Veselova

Submitted to the Department of Electrical Engineering
 and Computer Science on May 29, 2003

in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

ABSTRACT

We are interested in enabling a generic sketch recognition system that would allow more
natural interaction with design tools in various domains. Instead of writing recognizer
code for each new domain, new shapes should be added by describing them in a shape
description language. While writing such descriptions is easier than writing code, it is
still not a particularly easy or natural mode of interaction. The most natural way to teach
new symbols to the system would be simply drawing them. This thesis presents a
learning system that takes in a drawn symbol and produces a textual description of it
appropriate for using in a recognition engine. The main challenge is to decide which
properties of the example are relevant. People cope with this task in part, we believe,
through innate perceptual biases. We use studies of human perception of geometry to
understand these biases and use them to help select the relevant properties from a single
example. The main generalization power of the system is derived from two sources: 1) a
qualitative description vocabulary that reflects properties that people pay attention to and
2) mechanisms, derived from the observations about perception, that adjust the relative
importance of different properties based on the overall configuration of the geometric
primitives in the example. Using this approach the system is able to adequately describe
complex symbols by identifying a small number of relevant properties.

Thesis supervisor: Randall Davis
Title: Professor of Electrical Engineering and Computer Science

 3

Acknowledgements

• I would like to thank my research adviser Randy Davis for all the help and inspiration
that he provided throughout this work and during my time at the AI Lab in general.
Randy has helped me figure out a lot of difficult problems and provided great
guidance in this research, preventing me from straying into “bottomless pits” and
helping me keep focus. I am very grateful for his patience, support, encouragement,
feedback, and all the things he helped me learn.

• I would like to thank the students at the Design Rationale Group. It has been a great
experience working with them and learning from them.

• I would like to thank sponsors of Project Oxygen for financial support.

• Finally, I would like to thank all my friends at the MIT AI Lab for the advice and
discussion of many of the ideas that went into this research.

 4

CHAPTER 1 INTRODUCTION 7

1.1 Research context: multi-domain sketch understanding 7

1.2 The learning problem 8

1.3 Motivating example 8

1.4 Domain-specific knowledge 10

1.5 Measure of success 10

1.6 Example and approach 10

1.7 Scope and limitations 15

1.8 Structure of the thesis 16

CHAPTER 2 RELATED WORK 17

CHAPTER 3 KNOWLEDGE ABOUT HUMAN PERCEPTION 21

3.1 Singularities as the basis for qualitative vocabulary 22

3.2 Default ranking: relative importance of different singularities 24

3.3 Effect of global properties on constraint relevance 25
3.3.1 Tension Lines 25
3.3.2 Obstruction 26
3.3.3 Grouping 26

3.4 Challenges 27

CHAPTER 4 EXAMPLES OF PERFORMANCE 29

4.1 Example Error! Bookmark not defined.
4.1.1 Obstruction 31
4.1.2 Tension Lines 32
4.1.3 Grouping 33

4.2 More effects of tension lines 33

4.3 Familiar shapes 34

CHAPTER 5 IMPLEMENTATION 37

 5

5.1 Stroke segmentation 38

5.2 Identifying all constraints 39
5.2.1 Noise thresholds and constraint definition 40

5.2.1.1 Orientation 41
5.2.1.2 Aspect ratio 42
5.2.1.3 “Touch” constraints 42
5.2.1.4 Singular position constraints 44
5.2.1.5 Non-singular position constraints 44
5.2.1.6 “Inside” and “inside-centered” position constraints 46
5.2.1.7 Relative orientation 46
5.2.1.8 Relative length 47
5.2.1.9 Relative size 47

5.2.2 Possible contradictions. 48
5.2.3 Example result of identifying all constraints 50

5.3 Tension lines 51

5.4 Obstruction 52

5.5 Grouping 57
5.5.1 Connected components 57
5.5.2 Previously learned symbols 57
5.5.3 Combining grouping factors 59
5.5.4 Group constraints 60

5.6 Assigning relevance scores 62
5.6.1 Default scores 62
5.6.2 Obstruction 63
5.6.3 Tension lines 63
5.6.4 Grouping 64
5.6.5 Example 64

5.7 Removing redundancies 65

5.8 User interface 66
5.8.1 Straightening the symbol 66
5.8.2 Graphical notation 69

CHAPTER 6 EVALUATION 71

6.1 Data set and study procedure 71

6.2 Results 72

6.3 Analysis of disagreements 74
6.3.1 Disagreement on the “no” examples Error! Bookmark not defined.

 6

6.3.2 Disagreement on the “yes” examples Error! Bookmark not defined.

CHAPTER 7 FUTURE WORK 78

7.1 Extending the system’s descriptive ability 78
7.1.1 Arcs 78
7.1.2 Curve representation 79
7.1.3 Arbitrary number of elements 80
7.1.4 Higher-level constraints 81

7.2 Domain knowledge 83

7.3 Improved user interface 84
7.3.1 Automatic generation of potential “near misses” 84

7.4 Relevance ranking for recognition robustness 85

CHAPTER 8 CONCLUSION 86

REFERENCES 87

APPENDIX A 90

APPENDIX B 92

 7

Chapter 1 Introduction

1.1 Research context: multi-domain sketch understanding
Informal sketches are often an important part of early stage design in many

domains [Ullman, 1990]. Sketching helps people explore new ideas, brainstorm designs
and reduces cognitive load of the design process. Many designers still use pen and paper
for trying out ideas, since CAD tools available to date do not accept free-hand input.
These tools require precise specification of all parameters and well-formed designs. Only
when the design matures, can it be entered using a CAD tool for more detailed analysis
and documentation. Often the valuable information about the design intent expressed in
the paper sketches never gets documented. The designers also lose the benefit that
computers could potentially provide even at the early stages of design. Useful analysis,
qualitative simulations, or exploration of alternatives can be done even on a rough sketch,
if only the computer could recognize the objects sketched.

We feel that interaction with design tools could be made more natural if they not
only provided powerful analysis of precise designs, but also recognized sketched input at
the early design stages.

The work reported here is part of the effort by the Design Rationale Group (DRG)
that has developed sketch understanding systems for several design domains including
mechanical engineering and software [Alvarado and Davis, 2001], [Hammond and Davis,
2002]. Those systems used hand-coded recognizers for the domain shapes, which made
creating a system for each new domain or adding more shapes very tedious and time-
consuming.

The DRG is currently interested in enabling generic sketch recognition [Alvarado
and Davis, 2002], and is building a system that would reuse the recognition engine for
multiple domains. The intent is that a new domain can be added simply by providing
descriptions of the domain symbols using a shape description language. Each symbol is
described in terms of geometric primitives (lines, arcs, ovals, etc.) and constraints
between them (connects, parallel, above, horizontal, shorter, etc.) [Hammond and Davis,
2003]. Symbolic, easily readable textual descriptions make shape representation explicit
and allow any user to define new symbols.

While being able to type new shape descriptions is clearly easier than writing code,
describing shapes textually is itself not a particularly natural mode of interaction. This
thesis describes a system we have developed that is capable of learning a symbolic
description of a shape from the user’s drawing. The system provides a way to
automatically produce the textual descriptions needed by the generic recognition engine
from examples provided by the designer of the domain. These descriptions can be further
checked or edited by the designer, if required. Figure 1.1 presents the overall view of the
generic sketch understanding system and shows the role of our work.

 8

Figure 1.1 Generic sketch understanding system

1.2 The learning problem
Like handwritten characters, symbols in commonly used graphical languages can

be drawn with some variation. For instance, all of the drawings in Figure 1.2 are
examples of an inverter symbol in electric circuits:

Figure 1.2 Variations of the inverter symbol

Despite the variations, there are important properties that are going to be present in
all the examples, such as the lines forming the triangle or the relative size of the circle
and the triangle, and unimportant properties that can be varied, such as the relative sizes
of the sides of the triangle. We are faced with a classic problem in learning from
examples: how can we generalize, i.e., how can we identify which subset of properties is
relevant?

One common approach to this is to ask the user to draw the symbol numerous times
(e.g., hundreds of times for neural nets), in the belief that the inessential elements will
“average out.” We find this undesirable for our task of teaching new symbols to the
system. The system would be more natural if one could interact with it as if
communicating with another person. And typically, seeing one example of each of the
symbols in the domain is sufficient for people to learn them. Furthermore, even if people
see only one symbol without knowing the other symbols in the domain, they are able to
extract enough information to often make a correct decision on whether some new
drawing should be recognized as the symbol or not. Aiming at achieving this capability,
in our work we have focused on the problem of learning as much as possible from a
single example.

1.3 Motivating example
Consider how people learn new symbols such as the one in Figure 1.3.

Figure 1.3 Symbol for mechanized infantry used in military planning diagrams

learning
system

recognition
system

recognized objects

shape
examples textual

description

input sketch

 9

Most people would describe this symbol as a rectangle with diagonals, with an oval
in the center and a vertical line adjacent to the oval. A single example is often enough to
understand the structure of the symbol. People are likely to recognize it again, even if
drawn with some variations (Figure 1.4). The goal of the learning system is to do the
same, producing a description of the symbol that is adequate for later recognition.

Figure 1.4 Perceptually similar symbols

Both instances of the mechanized infantry symbol in Figure 1.4 differ from the
original example (e.g. in the aspect ratio of the rectangle, the orientations of the slanted
lines, and the relative size of the oval). Yet most people would recognize these instances.
They do not pay attention to the exact values of the varied properties in the original
example from Figure 1.3.

To understand what properties people attend to we have turned to studies of human
perception and memory of geometric shapes. We looked at Goldmeier’s studies of
similarity [Goldmeier, 1972], [Goldmeier, 1982], Arnheim’s work on art and visual
perception [Arnheim, 1974], and the perceptual grouping principles identified by the
gestalt psychologists [Wertheimer, 1923]. Inspired by the phenomena described in these
bodies of work and following our own introspection, we have developed a number of
heuristics for ranking different geometric properties on perceptual saliency. We show that
they are an important step towards matching people’s ability to learn from one example.

Our approach clearly depends on the assumption that the drawings in Figure 1.5 are
in fact to be interpreted as the same symbol.

Figure 1.5 Perceptually similar symbols

We feel that it is reasonable to assume that the above figures should be recognized
as the same symbol, because similarity and perceptual saliency play an important role in
the design of graphical languages. If two symbols that are perceptually similar – i.e.
differ on a property that people don’t pay attention to – it would be unwise to use them to
mean different things. They would be easily confused and the difference would be hard to
remember. We thus suggest that a well-designed graphical language is unlikely to contain
such ambiguous symbols.

 10

1.4 Domain-specific knowledge
Geometric saliency is not the only source of people’s capacity to learn symbols. In

some cases we also use domain-specific information. Consider the symbol of an AND-
gate in Figure 1.6.

Figure 1.6 AND-gate symbol

When students first learn this symbol in a logic design class they know that the
lines labeled l1 and l2 do not have to be the same length because they represent wires.
Domain-specific knowledge and graphical conventions sometimes help identify which
properties are not important, even if these properties are perceptually salient. Our system
currently does not incorporate such knowledge. We feel that relying only on geometric
information is still a step in the right direction. There are domains, like military diagrams,
where most of the symbols are abstract and do not resemble the objects they represent
(like the military symbol in Figure 1.3). Most people would still be able to learn these
symbols from one example, using only the geometric clues. In the future, the system
could be extended to incorporate domain information or common conventions.

1.5 Measure of success
Ideally, the measure of success for the system is whether the descriptions produced

are adequate for recognition. By adequate we mean that the description would cause the
recognition engine to admit all and only the instances that the user intended to be
recognized when teaching the system an example of the symbol. As the system uses only
geometric information, it is bound to make domain-related errors in some cases. For
example, it would conclude from Figure 1.6 that lines l1 and l2 have to be the same
length. Hence, we prefer to evaluate the system’s descriptions by comparing them to the
geometric properties a person shown the same symbol would pay attention to, without
taking into account the knowledge of the domain or of how the symbol is to be used.

One way to test this is to show people a symbol from an unfamiliar domain and to
ask whether different variations of it should be recognized as the original symbol. The
variations people accept should match the description produced by the system, and the
variations they reject – should not. We have conducted such a study with several military
planning symbols. On examples with high agreement between the subjects, the system
achieved 83% accuracy (i.e. it agreed with the majority answer 83% of the time). We
describe the study in more detail in Chapter 6.

1.6 Example and approach
This section illustrates the system’s performance on a simple example. Suppose the

user would like to teach the system the symbol in Figure 1.7.

l1

l2

 11

Figure 1.7 Military planning symbol

Our system expects the user to draw carefully – i.e. the lines that the user intends to
be straight, perfectly vertical (or horizontal), or well connected, should be drawn that way
and only a small amount of noise is allowed. We think this is a reasonable requirement
for the teaching phase, since the symbol has to be drawn only once.

As the user draws the symbol (with a mouse or pen-based input), each individual
stroke is segmented into simple geometric primitives – lines and ovals – using pen-speed
and stroke curvature data [Sezgin, 2001]. After the drawing is completed the user presses
“Go” to generate the description.

Figure 1.8 a) Single stroke. b) Segmentation into geometric primitives. c) Completed
symbol

The system straightens out the lines that are almost horizontal or vertical and
connects line endpoints if their separation is within a small threshold. The straightened
and labeled primitives are shown in Figure 1.9:

a) b)

c)

 12

Figure 1.9 Straightened and labeled primitives

Next, the system finds all pairwise constraints that hold in the drawing. The
constraints do not have to hold exactly: the system includes small thresholds on distances
and angles to account for noise. For example, even if there is a small horizontal offset
between the centers of lines l2 and l3, the system will consider these centers to be on the
same vertical line.

There were 96 constraints found for the symbol above (see Appendix A). The
challenge is to pick only the relevant subset of these constraints for the description. For
example, both of the constraints “same-length (l4 l1)” and “same-length (l4 l5)” hold in
the drawing. However, people would typically include only the second of those in their
description of the symbol.

The system uses several mechanisms to generalize the description (i.e. filter out
irrelevant constraints), inspired by the results of psychological studies and our
introspective analysis. We give a brief summary of these mechanisms and provide more
details in Chapters 3 and 5:

• Qualitative vocabulary: Initial generalization is achieved by using qualitative

terms to describe constraints and properties. For example, the orientation of a
line is described as “horizontal”, “vertical”, “positive-slope”, or “negative-
slope.”

• Different default relevance scores: Different types of constraints have been
shown by psychologists to have different perceptual importance. For instance,
the structural composition of the primitives in the symbol is more important
than their individual properties. In recognition of this, for example, the system
assigns higher relevance scores to “connects” constraints than “longer”
constraints.

• Score adjustment based on global properties: The system increases or
decreases the relevance score of each constraint using three heuristics that
analyze the global properties of the symbol:
1. Obstruction: This heuristic relies on the assumption that it is harder to pay

attention to constraints between two primitives if several other primitives
separate them (create obstruction). For example, in Figure 1.9 there are
several lines between lines l1 and l7. Hence, the relevance of constraints
like “longer (l1 l7)” will be decreased.

2. Tension lines: People pay attention to horizontal and vertical alignments of
primitives. We call such alignments tension lines. We increase relevance of
constraints breaking the alignment, if violated. For example, in Figure 1.9
line l3 is centered above line l2. Their endpoints are aligned vertically. The

 13

relevance of “above-centered” and “same-length” constraints would be
increased even if these primitives were separated by several others.

3. Grouping: People tend to group primitives together and see them as a
whole. The system currently supports grouping by connectedness and
familiarity of shape. When people see several primitives as one whole
object, they pay less attention to individual interactions of primitives that
form different objects. The system decreases the relevance of a constraint
on a pair of primitives if they belong to different groups. In Figure 1.9 lines
l6, l7, and l8, are recognized as the previously learned symbol “right
arrow”, so the relevance of constraints like “longer l6 l4” is decreased.

The system uses these mechanisms to calculate a relevance score between 0 and 1

for each constraint. We picked the middle of the range to be the cut-off threshold. Only
constraints that end up with a score above 0.5 are considered relevant enough to remain
in the final description of the symbol. Examine the description shown below produced for
the symbol in Figure 1.9:

 The GROUP HIERARCHY part of the description represents how the symbol was
broken down into groups of elements – perceptual grouping. Each group is what the
system interprets as a perceptual unity – a separate object within the symbol – either
because all of the elements are connected, or because they form a symbol that the system
has been taught before (the system has mechanism for recognizing such symbols). In this
case, the whole symbol (Group g1) is a connected component which in turn consists of
two groups: the “right arrow” (Group g2), which is a previously learned symbol, and a
connected group formed by the rest of the elements (Group g3). This grouping influences
the relevance score of various constraints according to the grouping heuristic mentioned
above.

The CONSTRAINTS part shows all the constraints on the groups and individual
elements of the symbol that the system considered relevant. Only half of the original
constraints got a relevance score above the filtering threshold and remained in the
description. Note that the constraints pertaining to the arrow like “horizontal: l6” are not
included, since they are already specified in the description of the previously learned
“right arrow” symbol.

Figure 1.10 Military planning symbol

 14

GROUP HIERARCHY:
Group g1 connected-component: l5 l4 l3 l1 l2 l6 l8 l7
 Group g2 symbol - right arrow: l8 l7 l6
 Group g3 other: l5 l4 l3 l1 l2

CONSTRAINTS:
elongated: (g3)
connects: (l5.p2 l6.p1) (l4.p2 l5.p2) (l4.p2 l6.p1) (l3.p2
l4.p1) (l2.p2 l5.p1) (l1.p1 l3.p1) (l1.p2 l2.p1)
horizontal: (l3) (l2)
vertical: (l1)

pos-slope: (l5)
neg-slope: (l4)
right: (l5 l1) (l4 l1)
upper-right: (l5 l2) (l4 l1) (l4 l2) (l3 l1)
upper-left: (l3 l4) (l3 l5) (l1 l2)
above-centered: (l4 l5) (l3 l2)
same-length: (l4 l5) (l2 l3)
longer: (l3 l1) (l3 l4) (l2 l1) (l2 l5)

This description reasonably captures the salient properties of the symbol. It would

cause the recognition engine to admit all the variations of the symbol in Figure 1.11 and
reject the variations in Figure 1.12.

Figure 1.11 Variations that would fit the description

Figure 1.12 Variations that would contradict the description

We have also started exploring ways of displaying the system’s conclusions
graphically, in order to enable the user to check the result without having to read the
textual description. The user selects line l3 and the system shows all constraints related to
this line (Figure 1.13). Short double dashes indicate the “same-length (l3 l2)” constraint
and the dashed line indicates relative position and center alignment – “above-centered (l3
l2)”.

 15

Figure 1.13 Graphical display of the constraints that the system considers relevant.

1.7 Scope and limitations
There are a number of limitations in the current sytem:

• The system currently supports only symbols composed of lines and ovals. It can
describe symbols that can be expressed in terms of qualitative constraints, like “same-
length” vs. “longer”. So for example, it would not be able to learn a constraint like
“three times longer.” The assumption built into the system is that the exact length
ratio is not likely to be the important distinguishing feature between two symbols in a
typical graphical language, since a difference between two length ratios would be
perceptually hard to notice for people – unless, of course, this difference is too large.

• Our qualitative vocabulary lumps several property values into one term and does not
capture that some values may be “too much.” The system would describe the relative
size of the circles in Figure 1.14a as “larger o1 o2”. The drawing in Figure 1.14b
would fit the description, even though most people would probably say that the
difference between the sizes is too large for Figure 1.14b to be recognized as an
instance of the symbol in Figure 1.14a.

Figure 1.14 a) Original symbol. b) Variation that fits the description of the original
symbol

A potential solution would be to add a “much larger” constraint. However, it may not
be easy to define a good boundary between “larger” and “much larger.”

• The system uses only positive constraints, i.e. it specifies only which constraints
should hold in the symbol. It does not include “must not” constraints. So it would not
be able to describe, for example, a closed shape (say, a four-sided polygon) that
should not have self-intersections.

a) b)

 16

• Currently the system uses only pairwise constraints. So certain constraints like
interval equality or alignment of multiple elements are not represented, which makes
it impossible to properly describe configurations like the one in Figure 1.15:

Figure 1.15 A symbol requiring alignment and interval equality constraints

All the limitations mentioned above refer to the system’s inability to sufficiently
constrain the description of certain symbols. This may create a problem if symbols in the
domain are distinguished based only on such properties – for example, if a normal
rectangle and a very long thin rectangle are intended to be two different symbols. The
system would have the same description for both.

Another set of limitations is related to symbols that the system is bound to
overconstrain. Symbols that can have an arbitrary number of certain primitives (Figure
1.16) fall into this category. The system always specifies exactly the number of
primitives that a symbol should have. Hence, springs, resistors, inductors, dashed lines,
etc. would be impossible to describe properly. We address potential approaches to this
problem in Chapter 7.

Figure 1.16 Symbols with an arbitrary number of primitives

1.8 Structure of the thesis
Chapter 2 discusses related work on sketching and learning shape descriptions. In

Chapter 3 we describe the findings in the perceptual literature that served as inspiration
for our approach. Chapter 4 illustrates the performance of the system on several examples
and shows how each of the generalization mechanisms is applied. We discuss the details
of the implementation in Chapter 5, followed by user study analysis in Chapter 6 and
ideas for future work in Chapter 7.

 17

Chapter 2 Related Work
There has been a substantial amount of work on making human-computer

interaction more natural by adding interfaces that support free-hand sketching. Work on
sketching systems to date falls into two categories: systems that use sketching interfaces
without attempting to interpret what the input means and systems that attempt to
recognize the sketched objects.

The work in the first category includes systems that transform the user’s free-hand
input to beautify it [Arvo and Novins, 2000], [Igarashi et al., 1997], systems that support
intelligent editing of sketches by allowing perceptually based selection of strokes [LeCun
et al, 1995], and systems that allow capturing sketches for documenting designs or
knowledge but minimize recognition of shapes, so that the user is free to draw anything
[Lin et al, 2002], [Forbus and Usher, 2002].

The systems that are more relevant for our work are the ones that perform
recognition of the sketched input. Here we mainly discuss two aspects of these systems:

• Representation: We are interested in how the recognized symbols are

represented, what features are recorded, and what the descriptive ability of the
chosen representation is. For our system we have chosen a symbolic, qualitative
representation that corresponds to properties that people typically find
perceptually relevant. It is an important source of generalization, because it
throws out information on properties that we expect to vary in different
instances of the symbol we want to learn. We examine differences and
similarities to this approach for the reviewed work.

• Learning: We look at how the recognizers for the symbols are acquired, i.e.
whether they are specified by hand or can be obtained automatically through
training, and if so, how many training examples are required. In our system we
learn symbols from a single example, while most of the systems reviewed here
need several examples. Yet, some systems are able to learn from much fewer
examples than others. So it is important to look at the sources of power for the
generalization mechanisms. We believe that in our system, apart from the
qualitative vocabulary, one source is the prior knowledge about human
perception of geometry. While other systems rely on looking at several
examples to “average out” the properties in the symbol that are irrelevant, our
system obtains that information from the relevance ranking of the properties
based on studies of human perception.

One of the early sketching systems that several other approaches are based on is

Rubine’s GRANDMA [Rubine, 1991]. Rubine describes a trainable recognizer for single-
stroke gestures. Gestures are represented by global features, like length and angle of the
bounding box diagonal, the total angle traversed, the sum of the angles at each mouse
point, the duration of the gesture, the initial angle of the gesture, etc. The gestures are
classified according to a linear function of the features, where the weights are determined
during training on multiple examples (typically around 50).

 18

Apart from handling only single strokes, the limitation of this approach is that it
uses only aggregate properties of the stroke. The representation does not explicitly
capture the detail that may help disambiguate between two gestures with very similar
aggregate properties. The representation used in our system makes explicit the properties
and constraints on parts of the symbol (like individual lines or ovals).

[Caetano et al., 2002] presents JavaSketchIt – a system that can recognize sketched
UI components (buttons, scroll-bars, check-boxes, etc.) and automatically create Java
code for them. To recognize UI components, JavaSketchIt uses CALI, a shape recognizer
described in [Fonseca et al., 2002]. CALI can recognize simple shapes: squares,
rectangles, diamonds, triangles, arrows, crosses, and simple single stroke gestures.

CALI is similar to Rubine’s recognizer in that it also uses aggregate properties to
represent shapes. Shapes are specified in terms of features of special polygons: enclosing
rectangle, convex hull, largest inscribed triangle, and largest inscribed quadrilateral.
Using these global features provides certain flexibility. For example, CALI recognizes
multi-stoke shapes. Also, shapes can be drawn with overtraced and dashed lines.
However, as mentioned above, the recognizer handles only simple shapes. For symbols
with more internal detail, like military diagram symbols (see Figure 1.3), these features
would be clearly insufficient. Moreover, the number of training examples used to achieve
a sufficiently high level of recognition was over 50 for each shape.

Landay and Meyers also describe a sketching tool for designing user interfaces –
SILK [Landay and Meyers, 2001]. SILK recognizes sketched interface widgets composed
of primitive components – rectangle, squiggly line, straight line, and ellipse. The
recognizers for primitive components are based on Rubine’s algorithm. A similarity to
our system is that SILK uses symbolic spatial relationships (like containment, nearness,
and vertical or horizontal sequence) between the primitive components to determine the
interface widget that the designer is trying to draw. For example, a scroll-bar is a long
skinny rectangle with a box contained in it. However, there is no mechanism for learning
these relationships. SILK creators specified the relationships for each UI widget
manually. Only the recognizers for the primitive components can be trained (using
Rubine’s algorithm). Our system, on the other hand, provides mechanisms to learn such
relationships from an example. Notice also that the set of spatial relationships in SILK is
limited by what is needed for the application at hand. It may be insufficient for describing
more complicated symbols in general (for example, the set does not include parallelism
or same-length properties).

The Electronic Cocktail Napkin (which is the recognition core of a later system for
sketching in conceptual design [Gross and Do, 2000]) uses a two level representation for
a symbol similar to that of SILK: low level glyphs and high level combinations of glyphs
described by symbolic spatial relationships between them [Gross et al., 1996]. A glyph is
a single-stroke or multi-stroke symbol represented by a transition sequence of the pen
through the cells of a three-by-three grid. For each glyph the aggregate properties, like
allowed number of strokes, number of corners, aspect ratio, and size, are recorded. More
complicated symbols can be composed from several glyphs, by specifying spatial
relationships between the glyphs. Spatial relationships include adjacency, containment,
and overlap of glyphs and intersection, parallelism, and tee conditions for line segments.

This representation allows describing a larger variety of symbols than SILK and
CALI. The Electronic Cocktail Napkin also lets the user to specify new glyphs and glyph

 19

combinations. Yet, when learning these combinations, the system records all the spatial
relationships that it finds for the combination and the user has to manually remove the
ones that are unimportant. There is again no automatic generalization mechanism.

Shilman et al. treat symbol recognition as visual language parsing [Shilman et al.,
2002]. The visual language consists of the declarative grammar that specifies ranges of
allowed values for a set of constraints between elements (distance, angle, width and
height ratios, and overlap). Training on many examples is used to turn these ranges into
distributions, so that the maximum likelihood parse tree can be calculated during
recognition. Again, the visual grammar has to be written by hand, i.e. the designer has to
determine relationships that are significant for the statistical model. Only the distributions
are obtained through training.

This system, as well as SILK and the Electronic Cocktail Napkin, deal with the
potential variability of symbol instances partially through using a small symbolic
vocabulary of spatial constraints. However, none of the systems provides capabilities for
learning which of these spatial constraints are important – the constraints have to be
provided by the user or the designer of the system.

Ferguson and Forbus describe GeoRep – a spatial reasoning engine that generates
qualitative spatial descriptions from perfect line drawings [Feguson and Forbus, 1999]. It
has been applied for symmetry detection tasks, critiquing simple diagrams of physical
phenomena, and spatial reasoning about military course of action diagrams. The paper
mentions future applications of GeoRep to sketching, once it is modified to process free-
hand input rather than exact line drawings. Apart from using a qualitative vocabulary of
spatial constraints, GeoRep also includes generalization capabilities.

The part of GeoRep that is relevant to our work is the Low-Level Relational
Describer (LLRD). LLRD produces qualitative spatial descriptions of the input in terms
of geometric primitives and relations between them. It handles lines, circular arcs, circles,
ellipses, splines, and text strings. It records position constraints like above, beside, etc.;
orientation constraints, like horizontal, vertical; connection relations, parallel lines,
interval relations, presence of polygons, and boundary description.

Similar to our system, GeoRep attempts to limit the number of recorded constraints
between different primitive elements, because not all of them are visually important. The
single mechanism it uses for this purpose is proximity. LLRD only looks at constraints
between proximal elements. Proximity is calculated as a function of size, shape type, and
distance between elements.

Like LLRD, our system prefers local interactions. Locality, however, is defined not
through distance but through the obstruction mechanism. The primitives are considered
“close” if there are no other primitives between them, regardless of the actual distance. 0
explains how we chose such definition based on observations about human perception.

In addition, our system adjusts the relevance of different properties of the symbol
based on alignments (tension lines) and grouping. We show that even if two primitives
are far away from each other, the constraints on them may still be relevant for the
description of the symbol, and these mechanisms help detect this.

Connell’s work on learning shape descriptions for images of physical objects
(airplanes, tools, household items, etc.) contains several ideas that are also reflected in
our work [Connell, 1985]. The goal of their system is to generalize a description for a
class of objects (e.g., “airplane”) from images for several objects in the class (e.g.

 20

individual types of airplanes) in order to be able to recognize a new instance of the
object. Objects are represented in terms of non-overlapping elongated blobs and their
qualitative properties (like straight, curved, tapered, etc.) and constraints on these blobs
(like joins, bigger-than, etc.). The description is recorded as a semantic network.

The parallel to our work is in the idea that the representation vocabulary should
correspond to perceptually salient properties of objects. The description should make the
visually important parts explicit. Connell talks about the importance of reflecting
people’s notion of visual similarity: “syntactic difference should reflect semantic
difference: similar things should give rise to similar descriptions, dissimilar things should
yield manifestly different descriptions.”

Connell’s system generalizes descriptions from a very small set of examples by
comparing their semantic networks and removing constraints and properties that are not
common between the examples. We believe that the ability to generalize from only a few
examples stems mostly from the qualitative description vocabulary that already gets rid
of a lot of information about the detailed properties of an object. The system does not
have to go through a lot of examples to “average out” the unimportant properties.

Our system differs from Connell’s approach in that it defines a ranking of the
constraints. It does not have to discover which constraints are unimportant by seeing their
absence in additional examples. The ranking already provides this information. This,
however, depends on how well the ranking reflects the actual biases in people’s
perception.

Calhoun et al. presents a system that is most similar to our approach. It is a system
that learns and recognizes symbols from relatively few examples. The recognizers are
used for interpreting sketches of physical devices [Kurtoglu and Stahovich, 2002].

Like Connell, Calhoun uses semantic networks. The nodes are primitives in the
symbol (lines and arcs) and the links are constraints between them. Constraints include:
intersections, relative location of intersections, angle between intersecting primitives, and
existence of parallel lines. The lines and arcs also have properties: type, length, length
relative to the sum of all lengths, slope, and radius. To train the recognizers the system
uses several examples of each symbol, including only the relationships and properties
that appear with high frequency in the examples. During recognition some degree of
matching error is allowed. The important part is that different weights are assigned to
different kinds of errors during matching, reflecting different perceptual importance. In
other words, if the learned descriptions mandate some unimportant constraints to hold,
the system can compensate for that during the recognition stage, because the weights on
matching errors for such constraints will be low.

The error weights play the same general role as the default relevance scores in our
system. For example, the relative length constraint in Calhoun’s system is always allowed
a larger error than the relative orientation constraint (the same is true for the default
scores in our system – relative length is less relevant than relative orientation). Yet our
system also adjusts relevance scores from the default scores, based on the overall
properties of the particular symbol, like obstruction, tension lines, and grouping. Using
these mechanisms our system approximates the observation that the same type of
constraint may have different perceptual importance depending on the global
configuration of primitives.

 21

So far we have talked about approaches that use symbolic descriptions (except for
Rubine’s system). Commonly used statistical machine learning techniques are mostly not
applicable for our system because we have chosen to learn from only a single example
and these approaches typically require a very large number of examples. For instance,
classifiers for handwritten character recognition such as LeCun et al.’s convolutional
networks, that achieve performance that is close to human subjects, use 6000 samples of
each character [LeCun et al, 1995].

Yet among these techniques we would like to mention one approach from the area
of handwritten character recognition that is similar in spirit to our work. Miller et. al.
describes a system for learning characters or digits from one example [Miller et al., 2000]
The authors create a classifier that is based on only a single training example for each
class. They achieve this by including “prior knowledge”, which is the shared probability
density on common transforms (deformations) of digits or characters. They create an
artificial data set by sampling transforms from the distribution and applying them to the
single example. Then a classifier, like nearest neighbor, for example, can be trained using
this data set.

Our system would not be able to use this approach directly because their current
work is limited to affine transformations (translate, rotate, scale, and sheer). We believe
that affine transformations are not the only variations that produce an image perceptually
similar to the original, so the distribution would not capture all the possible variations.
Consider the example in Figure 2.1. The second arrow cannot be obtained by an affine
transformation on the first arrow, because it would involve disproportionately scaling
different parts of the symbol:

Figure 2.1 The second arrow cannot be obtained by an affine transformation of the
first arrow.

Even though Miller’s et al. approach is not directly applicable, the idea of including
prior knowledge to be able to learn from one example is very similar to our approach. By
providing perceptually based constraint ranking we allow the system to extract the
important information from a single example of the symbol.

In summary, our approach is strongly determined by the fact that we are learning
from one example. Partially the generalization power comes from the qualitative
vocabulary of constraints that reflects the relevant properties. Several systems have used
this approach to address the variability of the symbol instances. In addition, instead of
using several examples as have been done in other systems, the generalization in our
system is guided by the relevance ranking based on default scores and global properties
of the symbol.

 22

Chapter 3 Knowledge About Human Perception
The challenge in learning symbols from a single example is to extract just the right

subset of properties from it. We believe that the relevant properties are the ones that
people pay attention to when looking at the symbol. A well-designed graphical language
would not distinguish symbols by properties that people tend not to notice. If two
symbols are very perceptually similar, but are intended to mean different things, they
would be often confused, making the language ineffective. Thus, we suggest that it is the
perceptually salient properties that constitute the essence of the symbol and should be
learned by the system for each example.

We have turned to studies of human perception and memory to understand what
people attend to and what they ignore in a geometric configuration. We rely mostly on
Goldmeier’s work on perceived similarity of geometric shapes and on memory traces
[Goldmeier, 1972], [Goldmeier, 1982]. We also draw useful insights from Arnheim’s
book on art and visual perception [Arnheim, 1974] and studies of the perceptual grouping
by the gestalt psychologists [Wertheimer, 1923]. This chapter describes the findings of
these studies that inspired the main generalization mechanisms used by the system:

• Qualitative vocabulary
• Default relevance ranking
• Adjusting relevance scores based on global properties of the symbol:

o Tension lines
o Obstruction
o Grouping

3.1 Singularities as the basis for qualitative vocabulary
Goldmeier attempted to discover which properties of a geometric figure people

tend to notice when looking at a symbol. He uses people’s perception of similarity to
explore this: “Some features of a figure are more important for the over-all impression
than others, so that changes of these features have a marked effect on similarity”
[Goldmeier, 1972]. Figure 3.1 illustrates a typical experiment. Examine the symbol in
Figure 3.1a and ask yourself which of 3.1b and 3.1c is more similar to 3.1a?

Figure 3.1 Which of b and c is more similar to a?

The majority of subjects chose c. Note that the left side of b is exactly the same as
a, yet even though in c all the lengths and angles are slightly changed, it is considered
more similar because of preserved symmetry. It is the symmetry that was perceptually
salient in the original figure.

b) c) a)

 23

Goldmeier’s experiments showed that people frequently attend to properties that he
called singularities, special cases in the space of geometric configurations (see examples
below).

Figure 3.2 a) A vertical (or horizontal) line is a special case of possible line
orientations. b) Parallel lines are a special case for possible angles between two lines

Features such as verticality, horizontality, parallelism, etc., are singular in the sense
that a small variation in them makes a qualitative difference: Rotate a vertical line
slightly and it is no longer vertical; do the same to a line described as “slanting upward”
(i.e., positive slope) and its qualitative description stays the same.

Goldmeier’s work showed that, while singularities significantly affect perception of
the symbol, people are relatively insensitive to variations in nonsingular properties.
Consider Figure 3.3a:

Figure 3.3 Which is of b and c is more similar to a?

Even though the thickness of the figure is preserved in c, the figure does not
preserve the straight line, so the majority of subjects chose b. The subjects tolerated a
large distortion in thickness and curvature, which are non-singular properties, because the
more salient singular property (straightness) was preserved in b.

Goldmeier describes the way people generalize geometric properties that they see
in a symbol. For each property “the value is coded either as singular, nearly singular, or
nonsingular… This system combines coding accuracy in the narrow singular range with
information reduction in the broad nonsingular range” [Goldmeier, 1982]. We use this
observation to reduce the description vocabulary to a few qualitative states, lumping the
range of nonsingular values into one term. For example, for a slanted line it is not
necessary to record the exact angle. It is enough to learn only that it has a positive or a
negative slope.

 Goldmeier notes that the nearly singular values are perceived as a distortion to the
singularity. Taking into account the nature of sketching where it is natural to expect
sloppy drawing, this distortion can typically be considered accidental. Our system
interprets nearly singular values as intended singularities, so the vocabulary consists only
of singular and nonsingular terms.

Goldmeier explicitly mentions some of the singularities, like parallelism,
horizontality, verticality, and straightness. We have picked the rest of the terms for the

a) b)

a)

c) b)

 24

vocabulary based on our own introspection and relying on Goldmeier’s description of
singularities as the “more regular, better, more unique” [Goldmeier, 1982], p. 44] and as
properties a change in which significantly alters the perception of the symbol.

The system records the properties of the symbol in the form of unary and binary
constraints on the geometric primitives (lines and ovals) in the symbol. The table below
shows the list of supported constraints (constraints that we consider singular are shown in
bold):

Touch constraints: Connects, meets, intersects, touches, tangent, overlaps
Orientation: Horizontal, vertical, positive-slope, negative-slope
Aspect ratio: Elongated, non-elongated
Relative position: Above-centered, right-centered, left-centered, below-

centered, above, below, right, left, upper-right, upper-left,
lower-right, lower-left, inside-centered, inside

Relative orientation: Parallel, perpendicular
Relative length: Same-length, longer
Relative size: Same-size, larger

3.2 Default ranking: relative importance of different singularities
In addition to showing that singular properties are perceptually more important than

nonsingular ones, Goldmeier also compared singular properties with each other
[Goldmeier, 1972]. Figure 3.4 and Figure 3.5 illustrate how this is done for different axes
of symmetry. The subjects were asked which of b and c is more similar to a.

Figure 3.4 Which of b and c is more similar to a?

Figure 3.5 Which of b and c is more similar to a?

In Figure 3.4 the majority of the subjects chose c, while in Figure 3.5 the choice
was b, even though the shapes in Figure 3.5 are simply rotated versions of Figure 3.4. In
both cases the viewers preferred the vertical axis of symmetry.

Although this example is not directly applicable to our system (since it currently
does not support symmetry detection), it illustrates the experimental framework in which

a) b) c)

a) b) c)

 25

the importance of different properties can be compared. Goldmeier presents several
similar experiments. They are not sufficient, however, to construct a ranking of the
different constraints used by our system. We had to use our own introspective analysis to
rank the average perceptual importance of different types of symbol properties. We did
this by studying common symbols in several domains (electric circuits, military planning,
mechanical engineering, etc.) and determining which of their properties allowed most
variation without large perceptual alteration to the symbols. The list below shows the
order in decreasing importance:

1. The parts that the symbol is composed of.
2. Touch constraints (connects, meets, etc.)
3. Orientation.
4. Relative orientation.
5. Relative position.
6. Relative length and relative size.

Note that this is the default ranking of constraints. Goldmeier argues that the

saliency of a given property depends on the particular configuration of the primitives in a
shape. The next section describes the observations that helped us develop heuristics for
adjusting the relevance of different constraints based on global properties like alignment
(tension lines), obstruction, and grouping of primitives.

3.3 Effect of global properties on constraint relevance

3.3.1 Tension Lines
In his book Art and Visual Perception, Arnheim argues that people pay attention to

regular alignments of geometric primitives in a symbol, particularly horizontal and
vertical alignments. In Figure 3.6a the circle is perceived to be “out of balance,” while
placing it on one of the dashed lines in 3.6b would create a more “stable” configuration
[Arnheim, 1974]:

Figure 3.6 Regular alignments

Arnheim talks about “the hidden structure of a square” that can be explored by
placing the circle in different places inside the square. The lines shown in Figure 3.6b
emerge as axes of stability, especially the horizontal and vertical lines. The alignment of
corners and the centers of the sides of the square form a kind of perceptual grid that other
elements are “pulled” toward.

In our system we call these alignments tension lines, which we define in terms of
alignments of line endpoints and midpoints. The system identifies a tension line wherever

a) b)

 26

at least two such line points align horizontally or vertically (currently, we do not support
diagonal alignments). Although this definition of tension lines may not capture the full
complexity of the perceptual mechanisms that create the hidden structure, we believe that
it can serve as a useful approximation.

Since the hidden structure grid represented by the tension lines is a salient element
of the symbol, we increase the relevance of relative length, position, and orientation
constraints that contribute to the creation of these lines.

3.3.2 Obstruction
We looked a variety of symbols to try to understand the perceptual importance of

different constraints. In the process we have noticed that in the symbols that contain a lot
of primitives, our attention seems to be limited to the local interactions between them.
Consider the example in Figure 3.7a below:

Figure 3.7 a) Pattern of lines. b) Two parallel lines that are part of the pattern. c)
Other pairs of parallel lines that are part of the pattern

The lines in Figure 3.7b are part of the pattern in a. In b it is noticeable that the
lines are parallel, while in a, that is not something we would normally notice. Part of the
reason for this might be that we perceive the pattern as a whole – a slanted elongated blob
of lines. Nevertheless, notice that the parallelism of the pairs of lines in c is more
noticeable in the original pattern than the parallelism of pair b. It is easier to pay attention
to the local interaction of these lines because there are no other lines separating them. We
try to approximate this effect by the notion of obstruction, which is measured by the
number of geometric primitives between a given pair. The relevance of constraints is
decreased for higher obstruction values.

3.3.3 Grouping
Finally, we also use observations of perceptual bias from the Gestalt psychologists,

who noted that people tend to combine individual primitives into a greater whole,
grouping them by proximity, similarity, etc [Wertheimer, 1923]. For example, Figure
3.8a is perceived as two rows of circles, rather than six individual circles. Properties of a
row as a whole are also perceptually more important than properties of its components.
We don’t tend to notice the vertical alignment of the circles in two columns the way we
do in Figure 3.8b:

a) b)

a) b) c)

 27

Figure 3.8 Perceptual grouping. It is generally not noticeable that parts of a are the
same as b

Grouping allows describing symbols more concisely. In the figure below the group
consisting of the circle and the arrow is centered inside the rectangle. Conveying the
same relationship using individual constraints on each of the primitives would be much
harder.

Figure 3.9 Military planning symbol for mortar

Our system currently supports two grouping principles: connectedness and
familiarity of shape, i.e. previously learned shapes are recognized as separate groups
within a new symbol. We decrease the relevance of constraints between pairs of
primitives that belong to different groups.

3.4 Challenges
Studies show that people’s view of geometric properties, such as sizes, angles,

orientation, and curvature, do not easily map onto exact measurements from the drawing.
Goldmeier notes: “Experiments demonstrate that similarity does not vary parallel with
simple and obvious geometric parameters.” Consider the example below, taken from
[Goldmeier, 1972]:

Figure 3.10 Which angle is 90º?

Figure 3.11 Which angle is 90º?

 28

It is much harder to tell which angle is 90º, even though the angles in Figure 3.10
are simply rotated versions of the ones in Figure 3.11.

Another example of a common misjudgment is the famous perceptual illusion
given below:

Figure 3.12 Do the lines seem the same length?

Even though the mechanisms causing such misjudgments are not understood well
enough to exactly replicate such biases computationally, we include heuristics for the
most common cases, decreasing the relevance of perpendicularity, for example, if it is
found in other than a horizontal/vertical configuration.

 29

Chapter 4 Examples of Performance
Even with the use of qualitative vocabulary, the number of the constraints initially

identified by the system for a given symbol can be fairly large. Most people would find
only a small subset of these constraints relevant for describing the symbol. The system
uses observations about people’s perceptual biases described in the previous chapter to
calculate relevance scores and filter out the large number of low scoring constraints. For
symbols with many primitives (more than 20) the reduction from the original number of
constraints can be more than tenfold.

The calculation is based on the default relevance scores for each constraint type and
the three mechanisms for adjusting these scores based on the global properties of the
symbol – obstruction, tension lines, and grouping. This chapter illustrates in detail the
effect of each of the mechanisms on a number of examples.

Consider the military symbol in Figure 4.1 drawn for the system. For this example,
we assume that the system has not previously been taught the rectangle or the triangle
symbols, so it is not able to identify them in the symbol.

Figure 4.1 Military symbol: a) Strokes segmented into primitives. b) Straightened and
labeled primitives

The system initially identifies 166 pair-wise constraints in the symbol (see full list
in Appendix A), examples of which include:

parallel: (l10 l6) (l9 l5)
longer: (l2 l5)
lower-right: (l6 o11)
same-length: (l8 l10)

Scoring on perceptual relevance and removing constraints with low scores leaves

only 80 constraints in the final description:

 30

Figure 4.2 Military symbol: a) Strokes segmented into primitives. b) Straightened and
labeled primitives

CONSTRAINTS:
connects: (l5.p2 l6.p1) (l4.p2 l6.p2) (l4.p1 l5.p1) (l3.p2 l6.p2) (l3.p2 l4.p2) (l2.p2 l3.p1)
(l1.p2 l5.p1) (l1.p2 l4.p1) (l1.p1 l2.p1) (l9.p2 l10.p1) (l7.p1 l10.p1) (l7.p1 l9.p2)
meets: (l7.p2 l8.c)
horizontal: (l4) (l2) (l8)
vertical: (l3) (l1) (l7)
pos-slope: (l10) (l6)
neg-slope: (l5) (l9)
above: (l10 l8) (l4 l5) (l4 l6) (o11 l10) (l9 l8)
right: (o11 l1)
below: (l5 l4) (l8 l10) (l6 l4)
left: (o11 l3)
upper-right: (l10 l7) (o11 l9) (l3 l4) (l3 l6) (l2 l1)
upper-left: (l2 l3) (l1 l4) (l1 l5) (l9 l7)
lower-right: (l5 l1) (l10 o11) (l4 l1) (l3 l2) (l3 o11) (l8 l9) (l7 l9)
lower-left: (l4 l3) (l1 l2) (l1 o11) (l9 o11)
above-centered: (o11 l4) (o11 l7) (o11 l8) (l2 l4) (l2 l7) (l2 l8) (l2 o11) (l8 l4) (l7 l4)
(l7l8)
right-centered: (l10 l9) (l3 l1) (l6 l5)
same-length: (l5 l6) (l2 l4) (l1 l3) (l9 l10)
longer: (l4 l5) (l4 l6) (l3 l2) (l3 l4) (l3 l6) (l1 l2) (l1 l4) (l1 l5) (l7 l9) (l7 l10)

The next three sections illustrate the adjustments of the default relevance scores the

system makes to arrive at this description. The mechanisms are applied in the order
discussed.

 31

4.1 Obstruction

Figure 4.3 Military symbol

For each pair of primitives, the system measures the obstruction value which is
approximately the number of other primitives between the pair. For example, there are 5
primitives between lines l2 and l4. The precise definition of the obstruction values is
given in Chapter 5.

The presence of other obstructing primitives makes the relationship between a pair
of primitives less noticeable. To reflect this, the system decreases the relevance of
relative orientation, position, length, and size constraints for the pair depending on the
obstruction value – larger obstruction values result in greater decrease. Examples of
constraints with a significant decrease include:

parallel: (l10 l6) (l9 l5)
longer: (l3 l5)
same-length: (l10 l8)
above: (l10 l6)
upper-right: (o11 l5)

 32

4.2 Tension Lines
Tension lines are horizontal and vertical alignments of two or more line endpoints

or center points. Figure 4.4 shows the tension lines (in red) identified by the system in the
example:

Figure 4.4 Tension lines formed by the primitives in the symbol

The aligned position of the primitives in the user’s drawing leads to relative length
and relative position constraints. Violating these constraints would break this
perceptually salient alignment, so the relevance of these constraints is increased.

For example, line l3 is centered to the right of line l1 and they have the same
length. The alignment of their end and center points is considered a salient property of the
symbol. The system increases the relevance of the “right-centered” and “same-length”
constraints necessary to maintain this alignment. These constraints become important
even though their relevance may have been previously downgraded by the obstruction
heuristic.

The system adjusts the relevance of 15 relative position and length constraints.
Examples of such constraints are given below:

same-length: (l4 l2) (l1 l3) (l6 l5)
right-centered: (l3 l1) (l10 l9)
above-centered: (l2 l4)

 33

4.3 Grouping

Figure 4.5 Military symbol

People tend to group together subsets of primitives in a symbol, especially when it
contains a lot of primitives. The group is perceived as one whole and relationships
between individual primitives belonging to different groups become less perceptually
important. Our system currently supports two perceptual grouping principles:
connectedness and familiarity of shape. In this case only the connectedness principle
applies since the system has not previously been taught the rectangle or triangle symbols
(which would have been recognized as familiar shapes). In Figure 4.5, the system
identifies three connected components:

Figure 4.6 Grouping of the primitives in Figure 4.5 based on connectedness

For this symbol, the system decreases the relevance of 35 constraints between
primitives in different connected components (like “longer (l4 l8)”, or “longer (l3 l7)”).

4.4 Another Use of Tension Lines
In the example in section 4.2 the system increases the relevance of a constraint

between a pair of primitives if the endpoints of these primitives contribute to the

 34

formation of two tension lines. The tension line heuristic is also applied when one tension
line is formed by centers of several primitives (more than two are required), even if their
endpoints are not aligned. Alignment of several centers creates a “stronger” tension line.
The system increases the relevance of each “above-centered” or “right-centered” that has
to hold in order not to break the alignment.

Consider the symbol for DC voltage in Figure 4.7:

Figure 4.7 Symbol for DC voltage: a) Drawn strokes segmented into geometric
primitives. b) Strokes straightened out and labeled

The description for this symbol is shown below. The system initially identified 45
constraints in the symbol. After calculating relevance scores and filtering out low scoring
constraints, 28 constraints were left in the description.

CONSTRAINTS:
meets: (l1.p2 l2) (l6.p1 l5)
horizontal: (l1) (l6)
vertical: (l5) (l4) (l3) (l2)
right-centered: (l5 l1) (l5 l2) (l5 l3) (l5 l4) (l4 l1) (l4 l2) (l4 l3) (l3 l1) (l3 l2) (l2 l1)
(l6 l1) (l6 l2) (l6 l3) (l6 l4) (l6 l5)
same-length: (l3 l5) (l2 l4)
longer: (l5 l4) (l3 l2) (l3 l4)

All the primitives form a strong horizontal tension line. Consider the constraint

“right-centered l6 l1.” The relevance of this constraint is first significantly brought down
by the obstruction mechanism since there are several lines between lines l6 and 11.
However, the presence of the tension line causes the system to increase of the relevance
of this constraint and it is not filtered out from the description.

Examples of the constraints that did not make the relevance bar after the scoring are
“longer (l5 l2) (l5 l1) (l6 l1)” etc.

4.5 Familiar Shapes
This section demonstrates the effect of the second grouping factor supported by our

system – the familiarity of shape. It groups together primitives within the symbol that
form a familiar shape – a symbol that has previously been learned by the system.

In many domains (e.g. military planning) symbols are composed of common shapes
like rectangles, triangles, diamonds, circles, etc. or a combination of other simpler
symbols. A much more concise description of the symbol is often possible in terms of

 35

constraints on those shapes as a whole. Those constraints become more perceptually
important while the constraints between individual primitives that belong to different
shapes are less noticeable.

The system checks whether any of the previously learned symbols are contained in
the new symbol and identifies such subparts as separate groups. Consider the symbol in
Figure 4.8. Before learning it, the system has been shown a rectangle, a square, a triangle,
and a cross and produced descriptions for those symbols. It searches for them in the new
symbol.

Figure 4.8 Military planning symbol composed of familiar shapes

Below is the system’s description for the symbol:

GROUP HIERARCHY:
Group g1: l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20

Group g2 subobject - regular triangle: l5 l7 l6
Group g3 subobject - regular triangle: l8 l10 l9
Group g4 subobject - square: l14 l13 l12 l11

 Group g5 subobject - square: l18 l17 l15 l16
Group g6 connected-component: l19 l4 l3 l1 l2 l20

Group g7 subobject - cross: l20 l19
Group g8 subobject - rectangle: l4 l3 l2 l1

CONSTRAINTS:
upper-right:(g3 g4)
upper-left:(g2 g5)
above-centered:(g3 g5) (g2 g4)
right-centered:(g5 g4) (g3 g2)
inside:(g5 g8) (g4 g8) (g3 g8) (g2 g8)
meets:(l19.p2 l3) (l20.p1 l3)
above-centered:(l20 l3) (l19 l3)

The system initially found 500 constraints in the symbol. 340 of these had their

scores reduced due to the grouping factor. For example, the relative length and position

 36

constraints between lines l14 and l16 are not affected by obstruction and would be
considered important using the tension line heuristic. Yet they receive a low relevance
score because the lines belong not only to different connected components but also to
different previously learned symbols, which in our system makes the relevance decrease
even greater.

The use of known shapes allows the system to describe the symbol in terms of
more general constraints on the shapes as a whole. There is also no need to include the
constraints that are already listed in the descriptions for previously learned symbols (there
were 93 such constraints in this example). As a result the description is compact even
though the symbol has a lot of primitives and the initial number of constraints is very
large. There are only 14 constraints in the final description.

 37

Chapter 5 Implementation
This chapter describes the processing steps the system goes through from the time

the user starts drawing the symbol to generating the final description. We provide the
definition of all supported constraints and their default relevance scores. We show how
the system adjusts these scores to filter out irrelevant constraints, based on three factors:
obstruction, tension lines, and grouping. We also present a graphical interface for
displaying the resulting constraints.

Figure 5.1 below briefly outlines the processing steps to generate the textual
description:

Figure 5.1 Processing steps to produce the description of a symbol

Each section describes one of these steps and illustrates the work of the system on
the symbol in Figure 5.2:

Figure 5.2 Military planning symbol

Drawn input

Stroke segmentation

Identifying all constraints

Finding tension lines Calculating obstruction Grouping

Relevance scores and filtering

Removing redundancies

Description (text output)

 38

5.1 Stroke segmentation
The user draws the symbol in the system’s drawing window (Figure 5.3), which

provides a grid to make it easier for the user to draw carefully. The program accepts any
mouse or pen-based input.

Figure 5.3 Drawing window

We use a toolkit developed by [Sezgin, 2001] to segment the strokes into simple
geometric primitives. The toolkit takes into account both stroke curvature and pen speed
data to find separate geometric primitives, based on the observation the people often slow
down the pen at corners. Our system instructs the toolkit to classify each stroke as either
a polyline or an oval.

If the user slows down accidentally (which often happens when using a mouse,
rather then pen input) the segmentation may produce spurious corners. We use alternating
segment colors for each primitive within a stroke to provide feedback on segmentation
(Figure 5.4). The user can press “Undo” and redraw the stroke, if the segmentation is
incorrect.

 a) b)

Figure 5.4 a) Original single stroke. b) Segmentation of the stroke

Figure 5.5 below shows the symbol from Figure 5.2 in the system’s drawing
window:

 39

Figure 5.5 Military planning symbol: strokes segmented into geometric primitives

The user presses the “Go” button after completing the drawing to generate the
description. All the strokes on the surface are considered to be one symbol.

As we have mentioned, generalization is done on the primitives, not on the stroke
data, so the order and the number of strokes does not affect the produced description. The
advantage of this approach is that the user is not required to draw the symbol in exactly
the same way during sketching as during the teaching phase – the system would
recognize it based on what it looked like, rather than how it is drawn. On the other hand,
some ways of drawing are more likely to occur than others. For example, one would
often draw a rectangle starting from the top-left corner and all in one stroke. The stroke
order and number information could give additional clues for the recognition engine for
distinguishing between symbols in cases of ambiguity. Our system currently does not
explicitly record this information, although the order is implicitly contained in the
primitive labeling.

5.2 Identifying all constraints
Once the drawing is completed, the system records all the constraints in the

drawing. Each constraint type is represented by a graph – one graph for “connects”, one
graph for “above”, etc. Geometric primitives are nodes in the graph and edges signify
whether the constraint holds between a pair of nodes. Unary constraints, like
“horizontal”, reuse the same data structure for uniformity, with all the edges as self-loops.
The edges in the graphs are directional, so for each symmetric constraint like “same-
length” or “parallel” two edges will be found for a given pair of primitives. The final
output description includes only one of each pair of symmetric constraints to minimize
redundant information.

To identify constraints the system considers each primitive for unary constraints
and each pair of primitives for binary constraints. As mentioned in 0, the vocabulary
consists of singular and non-singular constraints. The system first tests whether a singular
constraint holds for the primitive (or pair). For example, for line orientation, the system
tests whether it can be considered horizontal or vertical. Nearly singular values, like

 40

almost horizontal, are treated as accidental noise and recorded as singular. We describe
the noise thresholds in the next section.

If the singular constraint is not satisfied, the system then tests the non-singular
constraints (like “positive-slope” or “negative-slope” for line orientation). This approach
corresponds to Goldmeier’s observation that people’s perception is sensitive to
singularities and codes geometric properties in terms of their relation to the singularity
[Goldmeier, 1982], p. 43]. That is, for example, if a line is perceived as horizontal, it
cannot be simultaneously seen as positively sloped.

5.2.1 Noise thresholds and constraint definition
It is hard to draw the symbol perfectly; not all lines intended to be exactly

horizontal, connected, or aligned will come out that way (Figure 5.6).

Figure 5.6 Noisy drawing of a square: a) Original stroke. b) Stroke segmented into
lines

The system allows a certain amount of noise when testing for presence of
constraints. Noise tolerances are governed by three constants:

Constant Value Example
MAX_OFFSET:
This constant is used for testing
any constraints where the system
needs to determine whether the
distance between two points can
be considered negligible. The
constant specifies that the distance
should be less than 7 pixels.

7 pixels Two lines will not be considered
connected if the distance d between their
endpoints is greater than 7 pixels.

d

a) b)

 41

MAX_ANGULAR_OFFSET
This constant specifies the
maximum angular difference for
which the angle can be considered
negligibly small. It is used for
constraints like line orientation or
relative orientation.

10º Two lines will not be considered parallel
if their angle difference α is more than
10º.

SIZE_TO_OFFSET_RATIO
We do not want to consider the
distance d between two points
negligible if the size of the
primitives in question is small
(even when the MAX_OFFSET
threshold is satisfied). The
constant specifies the minimum
ratio between the size of the
smallest primitive and the distance
d.
The size should be at least 3 times
larger than d for d to be considered
negligible

3 times Line l1 is not considered to meet line l2
because its length s is less than 3 times
larger than the distance d to line l2.

We use the noise tolerance constants to determine when the system can decide that

a constraint holds in the drawing. Below we describe the definitions for each constraint in
the vocabulary. In the definition tables singular constraints are shown in bold.

5.2.1.1 Orientation
“Horizontal” and “vertical” constraints hold if the angle difference between the

ideal and the actual orientation of the line in the drawing is less than MAX_
ANGULAR_OFFSET and if the change in y (for horizontal) or x (for vertical)
coordinates from the center to the endpoints is less than MAX_OFFSET. If the
“horizontal” or “vertical” constraint is not satisfied, the orientation is recorded as either
“positive slope” or “negative slope,” depending on the slope of the line. The orientation
of an oval is defined by the orientation of its longer axis and applies only to ovals
satisfying the “elongated” constraint (see definition below).

Constraint Applies to Example
Horizontal lines, elongated ovals

Vertical lines, elongated ovals

Positive Slope lines

Negative Slope lines

α

s
d l2

l1

 42

5.2.1.2 Aspect ratio
Ovals are considered “non-elongated” if the ratio of their length to their thickness is

less than 1.5. Otherwise the oval is “elongated”.

Constraint Applies to Example
Non-elongated ovals

Elongated ovals

5.2.1.3 “Touch” constraints
We refer to “connects,” “meets,” “tangent,” etc. as the “touch” constraints. The

distance d between the points that are supposed to be coincident should be less than
MAX_OFFSET. The table below shows how we define d for each constraint. Also, the
ratio of the size of the smallest primitive and d should be greater than
SIZE_TO_OFFSET_RATIO. The size of a line is its length and the size of an oval is the
maximum of its width and height.

Constraint Applies to Definition of tested distance d Example
Connects Lines The distance between line

endpoints.

Meets lines, line
and oval

The perpendicular distance
from the line endpoint to the
line segment or oval
boundary.

Intersects lines and
ovals

Not applicable. The system
tests for the presence of
intersection.

Touches Ovals The smallest perpendicular
distance between oval
boundaries.

Tangent line and
oval

The smallest perpendicular
distance between the line and
the oval.

Overlaps Ovals Not applicable.The system
tests for the presence of
intersection of oval
boundaries.

 43

It may happen that several of the “touch” constraints are satisfied for a given pair of
primitives at the same time. For example, both “meets” and “intersects” constraints
would be satisfied in Figure 5.7.

Figure 5.7 The symbol satisfies both "meets" and "intersects" constraints

We want to choose only one interpretation. We define an order in which “touch”
constraints are tested and record only the first satisfied constraint:

For lines For line and oval For ovals
1. Connects
2. Meets
3. Intersects

1. Meets, tangent
2. Intersects

1. Touches
2. Overlaps

For some “touch” constraints the system also specifies where exactly the primitives

touch. For example, Figure 5.8 shows the kinds of cases we would like to distinguish:

Figure 5.8 a) Different points where one line may meet the other. b) Different points
of intersection of a line with the oval

For each of the “connects,” “meets,” “intersects,” “touches,” and “tangent”
constraints the system records the points of coincidence on both primitives. For example,
“meets (l1.p1 o1.t)” means that point p1 of line l1 meets oval o1 at the top.

As with all constraints, we attempt to reflect perceptual singularities in the
specification of coincidence points. The table below shows the definitions of possible
coincidence points on a line, with singular points shown in bold. Endpoint labels p1 and
p2 are assigned arbitrarily.

Point on a line Notation Example
Endpoint 1 p1
Any point between center and endpoint1 cp1
Center c
Any point center and endpoint2 cp2
Endpoint 2 p2

The end and center points are singular, so the system always starts by testing

whether a constraint holds for one of these points, that is if the distance from the

p1
cp1

c
cp2

p2

a) b)

 44

coincidence point on the other primitive to one of these points is less than
MAX_OFFSET and satisfies the SIZE_TO_OFFSET_RATIO threshold. If not, one of
the non-singular points is recorded.

Similarly, coincidence points are defined for ovals. Singular points that are tested
first are shown in bold.

Point on an oval Notation Example
Top t
Top right tr
Right r
Bottom right br
Bottom b
Bottom left bl
Left l
Top left tl

5.2.1.4 Singular position constraints
These constraints specify relative position of the primitives and the horizontal or

vertical alignment of their geometric centers. The centers are considered horizontally or
vertically aligned if the difference in their respective y or x coordinates is less than
MAX_OFFSET and SIZE_TO_OFFSET_RATIO is satisfied.

Constraint Applies to Example (the position of line

relative to oval)
Above-centered lines and ovals

Right-centered lines and ovals

We do not test for “below-centered” and “left-centered” constraints because their

definition is symmetric to “above-centered” and “right-centered” respectively.

5.2.1.5 Non-singular position constraints
These constraints specify relative positions of the primitives and are recorded only

in the absence of the corresponding singular position constraints described in the previous
section. The recorded constraint depends on the position of the center of the first
primitive relative to the bounding box of the second primitive. To test the constraint
“above l1 l2,” for example, the system would look at the center of line l1 and the
bounding box of line l2.

t
tr

r
br

b
bl

l

tl

 45

Constraint Applies to Example (the position of line
relative to oval)

Above lines and ovals

Below lines and ovals

Right lines and ovals

Left lines and ovals

Upper-right lines and ovals

Upper-left lines and ovals

Lower-right lines and ovals

Lower-left lines and ovals

The limitation of these definitions is that the boundaries between these terms do not

correspond to clear qualitative perceptual boundaries. For example, the difference
between the two drawings in Figure 5.9 is almost unnoticeable, while the produced
descriptions would be different – one would be “above (o1 l2)” and the other “upper-right

 46

(o1 l2).” This means that the description produced for the first symbol would prevent the
second symbol from being considered an instance of the first one.

Figure 5.9 Two very similar drawings that produce dissimilar descriptions

5.2.1.6 “Inside” and “inside-centered” position constraints
These constraints apply to primitives inside ovals. The “Inside-centered” constraint

holds if the primitive is inside the oval and the coordinate difference between its center
and the center of the oval is less than MAX_OFFSET and satisfies the
SIZE_TO_OBJECT_RATIO. Otherwise only the “inside” constraint holds.
”Inside” constraints do not have to hold exactly in the actual drawing, as long as they
hold if noise were removed from the drawing. For example, in Figure 5.10, the line is
considered to be inside the oval because the system decides that it satisfies the “meets”
rather than the “intersects” constraint with the oval:

Figure 5.10 The line is considered to be inside the oval

Constraint Applies to Example (the position of line
relative to oval)

Inside and
centered

line and oval, oval and oval

Inside line and oval, oval and oval

5.2.1.7 Relative orientation
“Parallel” and “perpendicular” constraints hold if the actual angle between the lines

in the drawing differs from the ideal angle by less than MAX_ANGULAR_OFFSET.
The system records these constraints only for lines that it identified as positively or
negatively sloped. This is done because, as we show further in Section 5.6, the system

 47

never filters out “horizontal” and “vertical” constraints. “Parallel” and “perpendicular”
constraints only would only provide redundant information for horizontal and vertical
lines, so the system does not record them.

Also, as shown in 0, it is hard for people to accurately tell the angle between the
two connected slanted lines (see Figure 3.10 and Figure 3.11), so we do not record the
“perpendicular” constraint for such lines.

Constraint Applies to Example (the position of line

relative to oval)
Parallel Lines

Perpendicular Lines

5.2.1.8 Relative length
Two lines are considered to have the same length if the ratio of the length

difference over the length sum is less than 0.05. Otherwise a “longer” constraint is
recorded.

Same length Lines

Longer Lines

5.2.1.9 Relative size
The size of the oval is defined as the maximum of its width and its height. Two

ovals are considered to have the same size if the ratio of the size difference over the size
sum is less than 0.08. Otherwise a “larger” constraint is recorded.

Constraint Applies to Example (the position of line

relative to oval)
Same size Ovals

Larger Ovals

 48

5.2.2 Possible contradictions
Tolerances for noise make it possible to record contradicting constraints, because

the system tests constraints for each pair of primitives separately. For example, in Figure
5.11a, the system will decide that both lines l1 and l2 connect to the endpoint of line l3 if
the distance between lines l1 and l2 is smaller than MAX_OFFSET. Remember that a
“meets” constraint is never recorded if “connects” is found first. The system examines
pairs (l1 l3) and (l2 l3) separately (Figure 5.11b). For both of these pairs, the distance
between line endpoints is small enough for the system to identify a “connects” constraint.
Yet it also decides that both lines l1 and l2 are vertical, which contradicts the “connects”
constraints.

Figure 5.11 a) Drawing resulting in potential contradictory constraints. b) Pairs of
primitives separately examined by the system

Figure 5.12 shows another example that may cause contradictions. If the noise
tolerance is large enough compared to the length of line l3, the system will decide that
both lines l2 and l3 are centered to the right of l1. Yet l3 is also above l2.

Figure 5.12 Drawing resulting in potential contradictions

We have not implemented a mechanism to detect and correct such contradictions.
Currently, the only solution for the user is to draw carefully, keeping in mind the
magnitude of the tolerance thresholds. The MAX_OFFSET threshold is indicated by the
size of the grid cells. The smallest primitives and distances in the symbol should be larger
than the grid size. And the level of noise, like accidental gaps and misalignments, should
be smaller than the grid size.

If the physical size of the pixels on the device is too small, it may be hard to keep
the noise under the MAX_OFFSET (which is specified in pixels) when drawing. We
allow the user to change this constant, which will be reflected visually in the grid size.

a) b)

 49

Absolute noise thresholds may be somewhat unnatural. Consider the lines in Figure
5.13:

Figure 5.13 a) Short lines. b) Long lines

Although the distance between the endpoints of the two lines is the same in both
cases, the lines in Figure 5.13b are much more likely to be perceived as connected than in
the lines in Figure 5.13a. That means that the maximum tolerance for line connectivity
could be larger for longer lines.

We do decrease the noise threshold if primitives are small, which is achieved by the
mandatory minimum SIZE_TO_OFFSET_RATIO. This constant always limits the noise
threshold to less than a third of the primitive size. Yet the system does not increase the
noise threshold beyond MAX_OFFSET if primitives get larger.

We chose to have an absolute maximum threshold for all primitive sizes, so that it
is clearer to the user what the system’s maximum noise tolerance is. We believe that this
would make it easier to determine how carefully one should draw, though we have not
verified this assumption in user studies. In the future work, if the system includes
contradiction resolution, size-dependent noise thresholds will probably be more
appropriate.

Although there is no generic mechanism for contradiction detection, we have
included several routines to correct one type of common mistake with relative length and
size constraints. These routines enforce the transitive closure in “same-length” and
“same-size” constraints and remove the “longer” and “larger” constraints that contradict
the closure.

Consider the triangle in Figure 5.14a. In Figure 5.14b the sides of the triangle are
aligned to show their relative length.

Figure 5.14 a) Triangle. b) Lengths of sides of the triangle

a) b)

l1

l2

l3

a) b)

l1
l2
l3

 50

Suppose, for example, that the system considers the length difference for line pairs
(l1 l2) and (l2 l3) negligible and records the constraints “same-length: (l1 l2) (l2 l3)” and
“longer: (l3 l1).” Using transitive closure the system finds that for consistency with
“same-length: (l1 l2) (l2 l3),” lines l1 and l3 also need to have the same length. Hence, it
removes the “longer” constraint and replaces it with “same-length (l1 l3)”. A similar
mechanism is used for relative oval size.

Clearly, the limitation of this mechanism is that it may interpret a series of very
gradually increasing lines to be the same length, even if the length of the first and the last
line in the sequence are significantly different.

5.2.3 Example result of identifying all constraints
Figure 5.15 shows a drawing of a military symbol with strokes segmented into

geometric primitives. We label the primitives for convenience.

Figure 5.15 Military symbol

The table below shows 122 constraints that the system finds in the symbol.

connects: (l4.p1 l3.p2) (l4.p2 l2.p2) (l4.p2 l9.p2)
(l3.p1 l1.p1) (l3.p1 l8.p1) (l2.p1 l1.p2)
(l2.p2 l9.p2) (l1.p1 l8.p1) (l9.p1 l7.p1)
(l7.p2 l8.p2)
meets: (l6.p1 l3.cp1) (l5.p2 l3.cp2)
intersects: (l6 l5)
horizontal: (l3) (l2)
vertical: (l4) (l1) (l7)
pos-slope: (l6)
neg-slope: (l5) (l9) (l8)
above: (l5 l9) (l3 l8) (l9 l2) (l8 l2) (l6 l9)
right: (l4 l8) (l4 l9) (l9 l1) (l9 l7) (l9 l8) (l8 l1)
(l7 l8)
below: (l2 l9) (l9 l3) (l8 l3)
left: (l1 l8) (l1 l9) (l9 l4) (l8 l4) (l8 l7) (l8 l9)
(l7 l9)
upper-right: (l5 l1) (l5 l8) (l4 l2) (l3 l1) (l6 l1)
(l6 l8)

upper-left: (l5 l4) (l3 l4) (l3 l9) (l1 l2) (l6 l4)
lower-right: (l4 l3) (l4 l5) (l4 l6) (l2 l1) (l2 l8)
(l9 l5) (l9 l6)
lower-left: (l2 l4) (l1 l3) (l1 l5) (l1 l6) (l8 l5)
(l8 l6)
above-centered: (l6 l2) (l6 l3) (l6 l7) (l5 l2) (l5 l3)
(l5 l7) (l3 l2) (l3 l7) (l7 l2)
right-centered: (l4 l1) (l4 l7) (l7 l1)
parallel: (l5 l8) (l5 l9) (l9 l8)
perpendicular: (l5 l6) (l8 l6)
same-length: (l5 l6) (l2 l3) (l1 l4) (l9 l1) (l9 l4)
(l8 l1) (l8 l4) (l8 l9) (l7 l5) (l7 l6)
longer: (l4 l5) (l4 l6) (l4 l7) (l3 l1) (l3 l4) (l3 l5)
(l3 l6) (l3 l7) (l3 l8) (l3 l9) (l2 l1) (l2 l4) (l2 l5)
(l2 l6) (l2 l7) (l2 l8) (l2 l9) (l1 l5) (l1 l6) (l1 l7)
(l9 l5) (l9 l6) (l9 l7) (l8 l5) (l8 l6) (l8 l7)

 51

5.3 Tension lines
The next processing step is to find tension lines – the horizontal and vertical

alignments of primitives in the symbol. The system starts by creating a list of tension
points. The list includes all line centers and endpoints and points on the top, bottom, left,
right, and center of the ovals. The horizontal or vertical alignment of two or more tension
points defines a tension line (Figure 5.16).

These alignments are found by a horizontal and vertical sweep through the list of
tension points sorted by y and x coordinates respectively. Each group of consecutive
tension points for which the maximum vertical (or horizontal) difference between point
coordinates is less than MAX_ OFFSET corresponds to a different tension line. This
means that the maximum misalignment of points on a tension line is MAX_OFFSET,
consistent with the overall noise threshold in the system.

Figure 5.16 Tension lines defined by groups of tension points

Grey lines in Figure 5.17b show tension lines for the military symbol in Figure
5.17a.

Figure 5.17 a) Symbol b) Tension lines for the symbol

a) b)

 52

5.4 Obstruction
After finding all constraints and tension lines the system proceeds to calculate

obstruction. The obstruction value for each pair of primitives is roughly the number of
other primitives between the pair. This section explains how obstruction values are
calculated.

Consider Figure 5.18. There are 4 lines between the lines l1 and l6.

Figure 5.18 Four lines separate lines l1 and l6

Notice, however, that it is not always clear whether a primitive is “between” a
given pair. If we look at lines l1 and l3 in Figure 5.19, it is hard to decide whether line l2
is between them.

Figure 5.19 Is line l2 “between” lines l1 and l3?

In Figure 5.19 line l2 does not completely separate l1 and l3, but it creates some
obstruction. In this case we would like to assign an obstruction value that is somewhere
between 0 (as, for example, in Figure 5.20a) and 1 (as in Figure 5.20b), so we use non-
integer obstruction values.

Figure 5.20 a) Line l2 creates no obstruction for the pair (l1 l3). b) Line l2 is clearly
between l1 and l3

l1 l2 l3

l4
l5

l6

l1
l2

l3

l1

l2

l3

l1
l2

l3

a) b)

 53

To calculate obstruction values for a pair of primitives, we define three special lines
connecting them:

Connecting line Examples
A line connecting the centers of two
primitives (cc)
A line connecting the center of the
first primitive to the closest point on
the second primitive (co)
A line connecting the center of the
second primitive to the closest point
on the first primitive (oc)

The contribution of every remaining primitive pi in the symbol to the obstruction

value for the pair (p1,p2) is an exponentially decreasing function of the distance between
pi and each of the connecting lines. This distance is taken relative to the size s of the
smaller primitive in the pair.

⎪
⎪

⎩

⎪
⎪

⎨

⎧ ++

=

∑
≠

other the
inside is oneor tangent,are touch,overlap, meet, connect, and if ,0

 ,3/)(

),(
21

/),distance(

3,2

/),distance(/),distance(

21
pp

ppO

socp

i

scopsccp iii ααα

where s = min(size(p1), size(p2)) and α is set to 0.2.

We examine obstruction calculation for the pair of lines (p1, p2) in Figure 5.21.

Figure 5.21 Example lines

oc

cc
co

p2

p1

co
oc

cc

p2

p1

p1

p2

p3
p4

p5

 54

Figure 5.22 Positions of primitives relative to the connecting line cc

Figure 5.22 shows the special line cc connecting the centers of lines p1 and p2. In
this case s is equal to the length of p1, since it is the smaller of the two lines. Line p3
intersects cc, so distance(p3, cc) / s = 0 and αdistance(p

3
, cc) / s = α0 = 1. Line p4 causes less

obstruction: αdistance(p
4
, cc) / s = α0.5 = 0.45. When distance(p3, cc) exceeds s the exponent

becomes greater than 1, and the obstruction will become less than α = 0.2, which is
relatively small.

The analysis is analogous for the connecting lines oc and co. We divide the
obstruction values obtained for each of the connecting lines by 3, so that if some
primitive intersects all three of them the total value would come to 1 (Figure 5.23):

Figure 5.23 One line separates lines l1 and l2

Notice, however, that there is a problem with defining obstruction in terms of the
distance to the connecting lines. Consider the example in Figure 5.24:

Figure 5.24 Line p3 should not obstruct p1 and p2

Line p3 should not obstruct the pair (p1, p2), but it is very close to the connecting
lines so the obstruction formula would give a value close to 1. To deal with this problem
we remove from consideration all the primitives that are behind what we call the
boundary infinite lines for the primitives p1 and p2. These lines narrow down the region
where a primitive can obstruct the pair (p1, p2) (

p3
p1

p2

l1

l2

l1

l2

p1

s

p2

cc
p3

p4

p5 > s

 55

Figure 5.25):

Figure 5.25 a) Pair of lines. b) Boundary lines for the pair (p1, p2) and the obstruction
region

The obstruction values are calculated only for primitives that are fully or partially
contained in the obstruction region between the boundaries. For each of the primitives in
a pair (p1, p2), the boundary is defined depending on the relative orientation of the
primitive and the line cc connecting the centers of p1 and p2. The goal is always to keep
the boundaries close to parallel. We define two cases, depending on the acute angle α
between the primitive and the line cc:

• α ≥ 72º: This means that the primitive is close to being perpendicular to the

connecting line cc. The boundary in this case is simply the extension of the line:

Figure 5.26 Boundary for the primitive p1

• α < 72º: In this case the primitive is close to facing the other primitive in the
pair with its endpoint. The boundary is perpendicular to the line cc and passes
through the endpoint of the primitive p1, with a small offset (MAX_OFFSET).
The offset is included so that lines connected to this endpoint would not be
considered behind the boundary:

p1

p2

a) b)

p1

p2

obstruction

p1

α

p2

boundary

cc

p1

p2

α

boundary

cc

 56

Figure 5.27 Boundary for the primitive p2

For ovals, the boundary is perpendicular to the line cc. As in the previous case,

there is a small offset (MAX_OFFSET) that exposes part of the oval, so that a line
tangent or meeting the oval at that part would not fall behind the boundary:

Figure 5.28 Boundary for the oval

Figure 5.29 Military symbol

The table below shows obstruction values for the symbol in Figure 5.29. As we can
see, the obstruction value for the pair (l3, l2), for example, is 3.9. It is caused by the lines
l7, l8, and l9, and somewhat by the lines l4 and l1. As defined by the obstruction
equation, when two primitives touch, the obstruction will be zero, as for the pair (l3 l1),
for example.

 l1 l2 l3 l4 l5 l6 l7 l8 l9
l1 0
l2 0 0
l3 0 3.9 0
l4 4.8 0 0 0
l5 3.2 4.7 0 1.5 0
l6 2.5 4.7 0 2.3 0 0

cc

p2

p1 boundary

 57

l7 1.5 0.5 0.6 1.5 2.4 2.4 0
l8 0 0.8 0 3.9 2.6 1.7 0 0
l9 3 0 0.8 0 1.9 1.9 0 0 0

5.5 Grouping
This is the final processing step before relevance scores can be calculated for all the

constraints. We support two grouping principles: connectedness and familiarity. The
system produces candidate groups by segmenting the drawing into connected components
and identifying previously learned symbols as drawing subparts. It then combines these
groups into a hierarchy and merges any groups that share the same primitives. This
section describes these steps in detail.

5.5.1 Connected components
Any two primitives that touch in some way are considered to be in the same

connected component. To compute the components, the system constructs a graph in
which nodes are primitives and an undirected edge exists for any pair of primitives
constrained by “connects”, “meets”, “intersects”, “touches”, “overlaps”, or “tangent.”
The system performs a depth-first search on this graph to find its connected components,
which correspond to the connected components in the symbol.

Figure 5.30 Examples of touching primitives

The system identifies three connected components in Figure 5.30:

Component 1: l6, l7, l4, l5, l3, l2, o1, o12
Component 2: o11, o10
Component 3: l9, l8

5.5.2 Previously learned symbols
To identify the second set of candidate groups the system looks for previously

learned symbols as subparts of the new symbol. For each stored symbol it searches for a

 58

mapping of primitives that makes its constraints a subset of all the constraints in the new
symbol.

For example, the primitives l7, l6, l8, and l5 in Figure 5.31b satisfy the constraints

of the rectangle symbol in Figure 5.31a, given the mapping: (l1→l8) (l2→l5) (l3→l6)
(l4→l7).

Figure 5.31 a) Rectangle. b) New symbol

Identifying previously learned symbols is a subgraph isomorphism problem on the
symbol graphs, where the primitives are nodes and constraints are edges. We use
Ullman’s algorithm to compute the isomorphism [Ullman, 1976]. It proceeds by trying
one mapping pair at a time and checking edges given the pairs so far, until it fails or finds
the compete mapping. For example, if the algorithm is looking for the rectangle from
Figure 5.31a in the symbol in Figure 5.31b, it can try setting (l1→l8). The “horizontal l1”
constraint is satisfied for l8, so it proceeds to set the mapping for l2, now trying to ensure
that the mapped primitives in the new symbol satisfy the same constraint as l1 and l2 in
the rectangle symbol, and so on.

The running time of this algorithm is exponential in the number of primitives and
linear in the number of previously learned symbols. We find that in practice it runs
reasonably fast because most symbols have a small number of primitives and because
mappings are quickly pruned when constraints involve only a few primitives.

Previously learned symbols may be related. For example, an isosceles triangle is a
subclass of a triangle in general. The isosceles triangle has more constraints. The system
keeps track of the subclass relationships between the learned symbols in a multiple-
inheritance domain graph. Figure 5.32 shows such a graph for different kinds of triangles.

Figure 5.32 Domain graph for different types of triangles

l9 l10
l8

a) b)

l2 l4
l3

l5

l1

l7
l6

 59

The lines l8, l9, l10 in Figure Figure 5.31b would match all of these triangles. In
such cases the system chooses the most specific interpretation, i.e. the one with most
constraints. To achieve this, the matching process starts from the bottom of the domain
graph. Once a set of primitives is matched to a symbol in the domain graph, there is no
need to match this set to the ancestors of the symbol. We know that they are all
guaranteed to match because they contain fewer constraints.

Figure 5.33 Military symbol

The system identifies previously learned cross and rectangle symbols as subparts of
the symbol in Figure 5.33.

5.5.3 Combining grouping factors
The system combines candidate groups – connected components and previously

learned symbols – into a group hierarchy.

Figure 5.34 shows the group hierarchy for the symbol in Figure 5.33.

Figure 5.34 Group hierarchy of the symbol in Figure 5.33

If one group shares primitives with another group but cannot be its child or parent
in the hierarchy, the two groups are merged into one. For example, in Figure 5.35 the
system would find a triangle and a rectangle (the whole figure). They share the same
primitive, so they will be merged into one group.

Group g1 connected-component

Group g2 symbol – cross

Group g3 symbol – horizontal rectangle

Group g4 other (the remaining primitives in the
connected component)

 60

Figure 5.35 Symbol with competing groupings

This approach does not always produce the most salient grouping hierarchy. For
example, Figure 5.36b shows the grouping hierarchy for the symbol in Figure 5.36a:

Figure 5.36 a) Symbol. b) Grouping produced by the system. c) Alternative grouping

As a result of merging, the grouping in Figure 5.36b does not recognize the
rectangle as a salient part of the symbol. Consequently, the system will not record, for
example, constraints like “inside (circle rectangle)”, which would be more concise than
specifying interactions of the circle with each of the primitives in the rectangle instead.
The grouping in Figure 5.36c would be more appropriate.

A potential approach to this problem would be to resolve competitions between
groups by picking a “winner” that gets to keep the shared primitives, rather than merging
the groups. The winner could be defined, for example, as the group with the largest
number of primitives. With that approach the system would produce a grouping shown in
Figure 5.36c.

5.5.4 Group constraints
The system finds constraints between every two groups in the hierarchy that do not

have an ancestor-descendant relationship. We currently support aspect ratio, orientation,
relative position and relative size constraints, which are defined similarly to constraints
on ovals and lines:

• Aspect ratio: The aspect ratio of a group is defined by the aspect ratio of the group’s

smallest-area bounding box (which does not have to be axis-parallel). This constraint
is only identified for closed shapes. The group is “non-elongated” if the ratio of its
length to its thickness is less than 1.5. Otherwise the group is elongated.

Group constraint Example

a) b) c)

 61

Group constraint Example
Non-elongated, Elongated

• Orientation: The constraint applies only to elongated groups. The orientation of the

group is defined by the orientation of the longer axis of the smallest-area bounding
box of the group. So it is computed as defined for lines in section 5.2.1.1:

Group constraint Example
Horizontal, Vertical, Positive slope,
Negative slope

• Relative position: Position constraints are defined the same way as for lines and

ovals in section 5.2.1 using the axis-parallel bounding box of the second group and
the center of the first group (defined as the geometric center of the smallest-area
bounding box). The position of the center relative to the bounding box determines the
constraint (see the table below).
 “Inside” and “inside-centered” constraints are identified only if the outer group is a
closed shape. “Inside-centered” holds if one group is inside another and the difference
between the center coordinates of the groups is less than MAX_OFFSET and satisfies
the SIZE_TO_OBJECT_RATIO. The size of the group is defined as the length of the
smallest-area bounding box of the group. “Inside” constraints hold in the same loose
sense as we mentioned for lines and ovals. The primitives of the inner group are
allowed to touch the boundary of the outer group as long as the system does not
identify “intersects” constraints.

Group constraint Example

below

above upper-right upper-left

left right

lower-left lower-right

right-centered left-centered

below-centered

above-centered

 62

Group constraint Example
Inside, Inside-centered

Figure 5.37 Military symbol

For the symbol in Figure 5.37 the system finds 4 group constraints:
above-centered: (g2 g4)
inside-centered: (g4 g3)
elongated: (g3)
horizontal: (g3)

5.6 Assigning relevance scores
A relevance score between 0 and 1 is computed for every constraint. This section

explains how relevance scores are calculated based on:
• Default scores
• Obstruction
• Tension lines
• Grouping

5.6.1 Default scores
The default score for every constraint type is selected to approximate the relative
perceptual relevance of the type:

Constraints Default
relevance
score

Connects 1.0
Meets, Intersects, Tangent, Inside, Inside-centered 0.95

g1

g2

g3
g4

 63

Touches, Overlaps 0.9
Horizontal (lines), Vertical (lines) 0.8
Positive slope, Negative slope, Position constraints (except inside),
Parallel, Perpendicular

0.7

Horizontal (ovals), Vertical (ovals), Elongated, Non-elongated, Same-
length, Same-size

0.6

Longer, Larger 0.55
We obtained these scores by ordering different types of constraints by their

perceptually saliency, based on our introspection with various symbols, and assigning
scores spread out in the interval between 0.5 and 1.0 according to this ordering.

More accurate relevance ordering could potentially be obtained through looking at
a large variety of symbols, using the same approach as in Goldmeier’s similarity
experiments. In such an experiment the subjects would look at a symbol and two
variations of it, produced by changing two constraints that we want to compare. The
subjects would be asked which of the variations looks more similar to the original symbol
and their choice would indicate which of the two compared constraints is less important.
The constraint varied to produce the more similar symbol is the less perceptually relevant
of the two, because changing it altered the perception of the symbol less. Section 3.1
provides such an experiment for comparing the importance of the degree of curvature to
the importance of line straightness (Figure 3.3).

Three factors – obstruction, tension lines, and grouping – are used to increase and
decrease the default scores of relative position, size, length, and orientation constraints.
The score of all “touch” (i.e. connect, intersects, etc.), individual orientation, aspect ratio,
and group constraints is not changed. As a result, these constraints will always remain in
the description. In Chapter 7 on future work, we discuss why it may still be useful to rank
these constraints by relevance and what could be done to enable the system to learn that
in certain cases even these constraints may be irrelevant.

Each of the three adjustment factors pushes the relevance of a constraint up or
down depending on the strength and direction of influence δ of this factor. For the
relevance score r, the new score r′ after adjustment will be:

⎩
⎨
⎧

+
−+

=′
 negative. is theif ,

relevance. theincreases hence and positive is factor theif),1(
δδ

δδ
rr

rr
r

This formula achieves an asymptotic approach towards both 0 and 1.
The factors are applied in the order of:
1. Obstruction
2. Tension lines
3. Grouping

5.6.2 Obstruction
An obstruction value is calculated for each pair of primitives, corresponding

roughly to the number of primitives between the pair. The relevance of relative
orientation, position, length, and size constraints for this pair will be decreased according
to the amount of obstruction O(p1, p2). This is intended to mimic the psychological

 64

observation that the more primitives are between a given pair the less we pay attention to
the constraints for it. The influence constant for this factor is δob = –0 .15 O(p1, p2).

5.6.3 Tension lines
Tension lines represent salient alignments of the primitives in a symbol. This factor

increases the relevance of the relative position, length, and size constraints violating
which would prevent the formation of identified tension lines. We deal with cases where
the pair of primitives supports either one or two tension lines:
Relevance increased Example
Affected constraints: Above- , below-,
right-, and left-centered; Same-length;
Same-size.
Condition: The constraint is between two
primitives that have endpoints on two
parallel tension lines (formed by these or
other primitives).

Affected constraints: Above- , below-,
right-, and left-centered.
Condition: The constraint is between two
primitives the centers of which are on the
tension line with at least one more center
point of another primitive.

The relevance of the “right-centered”
constraint for all of these pairs will be
increased.

The influence constant for tension lines is δtl = +0.5.

5.6.4 Grouping
Grouping affects relative orientation, position, length, and size constraints. The

factor approximates people’s tendency to pay attention only to aggregate properties of the
grouped primitives and to ignore the individual interactions of primitives in different
groups.

 The system decreases the relevance of the constraints between a pair of primitives
if they belong to two different groups. Examples of such primitives are shown in Figure
5.38 in bold:

Figure 5.38 a) Two primitives in different connected components. b) Two primitives
in previously learned shapes

a) b)

 65

The influence constant for a pair of primitives in different groups when neither of
the groups is a previously learned symbol is δdg = –0.2. If one or both of the groups is a
previously learned shape we expect the attention to individual primitives to be even less
so the constant is δds = –0.4.

5.6.5 Example
After applying the obstruction, tension lines, and grouping factors to adjust the

default relevance scores, the system removes constraints with scores that ended up below
the 0.5 threshold.

Figure 5.39 Military symbol

67 low-scoring constraints were removed from the initial list of 122 constraints for
the symbol in Figure 5.39. Examples include:

parallel: (l5 l8)
same-length: (l7 l6)
upper-right: (l6 l1)
upper-left: (l5 l4)

5.7 Removing redundancies
The descriptions for previously learned symbols are available in the domain graph,

so there is no need to list the constraints for those symbols in the new description. To
produce the final description the system filters out all such constraints that pertain to the
previously learned symbols that are part of the new symbol.

The final description for the symbol in Figure 5.39 contains 26 constraints, after
removing 29 constraints related to the descriptions of the cross and the rectangle:

 66

GROUP HIERARCHY:
Group g1 connected-component: l6 l3 l5 l4 l2 l1 l8
l7 l9
 Group g2 symbol - cross: l6 l5
 Group g3 symbol - horizontal rectangle: l3 l4
l2 l1
 Group g4 other: l8 l7 l9

CONSTRAINTS:
elongated: (g3)
above-centered: (g2 g4)
inside-centered: (g4 g3)
connects: (l4.p2 l9.p2) (l3.p1 l8.p1) (l2.p2 l9.p2)
(l1.p1 l8.p1) (l7.p1 l9.p1) (l7.p2 l8.p2)

meets: (l5.p2 l3.cp2) (l6.p1 l3.cp1)
vertical: (l7)
neg-slope: (l9) (l8)
right: (l9 l7) (l9 l8) (l7 l8)
upper-right: (l6 l8)
upper-left: (l3 l9) (l8 l2)
above-centered: (l5 l3) (l5 l7) (l3 l7) (l7 l2) (l6 l3)
(l6 l7)
right-centered: (l4 l7) (l7 l1)
parallel: (l8 l9)
same-length: (l4 l9) (l1 l8) (l8 l9)
longer: (l3 l7) (l3 l8) (l2 l7) (l2 l9) (l9 l7) (l8 l7)

Applying the mechanisms inspired by the studies on human perception and

removing redundant information has allowed the system to reduce the number of
constraints for this symbol from the initial 122 to 26.

Figures below demonstrate the variations of the symbol in Figure 5.39 that would
and would not fit the description:

Figure 5.40 Examples of variations that would fit the description

Figure 5.41 Variations that would not fit the description

5.8 User interface
We would like the user to be able to check descriptions output by the system

without having to read the text. We have taken initial steps towards creating a suitable
interface for this purpose. It combines straightening the symbol to enforce some of the
constraints in the description and displaying the rest of the constraints using simple
graphical notation similar to the conventions in geometry textbooks.

 67

5.8.1 Straightening the symbol
The system attempts to straighten the primitives in the symbol and enforce the

constraints from the description. Currently, only orientation, aspect ratio, connects, and
meets constraints are taken into account. The system proceeds through four steps:

Step Example
1. Straighten individual primitives: Ovals
satisfying the “non-elongated” constraint are
turned into perfect circles. Lines that the system
identified as horizontal or vertical are rotated
through the center to achieve perfect alignment
with the axes.

2. Align collinear primitives: Axis-parallel
lines that have the same orientation and satisfy
“connects” constraints are made collinear.

3. Enforce connections: Endpoints of lines
satisfying “connects” constraints are adjusted in
three ways:
• If both lines are not slanted, their endpoints

are extended to the point of intersection.
• If one of the lines is slanted, its endpoint is

connected to the other.
• If both lines are slanted, the connection point

is set to be the midpoint.

4. Enforce meets constraints: The endpoint of
the line that should “meet” the other line is
adjusted to be on that line in such a way that the
ratio of distances from the endpoint of the first
line to the endpoints of the second line is
preserved.

Steps three and four are performed for each constraint without consideration of

whether the transformation may break other constraints, so it is possible that not all of
these constraints will hold in the final drawing. In practice, however, this algorithm
works reasonably well. Figure 5.42b shows the straightened version of the symbol in
Figure 5.42a.

 68

Figure 5.42 a) Original primitives. b) Straightened symbol

We have also explored an alternative way to straighten the symbol using tension
lines (though chose to keep the first method for the current system). For all tension points
on a given horizontal tension line the system sets the same y coordinate (calculated from
their average). The same happens for the x coordinates for the points on the vertical
tension lines:

Figure 5.43 Straightening the symbol using tension lines

This mechanism usually produces more accurate results than the straightening
algorithm described previously. Consider the example in Figure 5.44b for the symbol in
Figure 5.44a.

a) b)

b)

 69

Figure 5.44 a) Original primitives. b) Straightened symbol

Unfortunately, the identified tension lines are sometimes contradictory. For

example, several points from a short vertical line may appear on the same horizontal
tension line because of the tolerance for noise. This makes straightening out much less
reliable. Consider the result in Figure 5.45 below:

Figure 5.45 a) Original primitives. b) Drawing straightened according to tension lines.
c) The list of horizontal lines the system identified in the drawing

We have not yet implemented a mechanism to remove such contradictions, so we
mostly rely on the first method to straighten the symbol.

5.8.2 Graphical notation
In addition to straightening out the symbol we display some constraints graphically.

For certain constraints, like same length and perpendicular, there are established
conventions, like the ones used, for example, in geometry textbooks. For others we have
created our own notation. We mark only the less obvious constraints, i.e. the ones that
may not be evident from straightening the symbol:

Constraint Notation Example
Above-centered,
below-centered

Centers of the primitives
marked by dots. Dashed-line
through the centers

Above, below, left,
right

Centers of the primitives
marked by dots. Dashed arrow
(axis-parallel) in the direction
of the other primitive

Upper-right,
upper-left, lower-
right, lower-left

Centers of the primitives
marked by dots. Dashed line
connecting the centers.

a)

a) b)

TENSION LINES:
Horizontal: l2.p1 l2.center l1.p1 l2.p2 l3.p1
Horizontal: l6.p1 l5.p1 l3.center l1.center l6.center
Horizontal: l5.center l6.p2 l4.p1 l5.p2 l4.center
Horizontal: l3.p2 l4.p2 l1.p2

c)

 70

Perpendicular Square at the line intersection.

Parallel Squares at the corners of the

lines and a line perpendicular
line to them

Same-length Two short dashes through both

lines

Longer Three dashes on the longer

line and two dashes on the
shorter line

All the constraints related to a given primitive are displayed whenever the user

clicks on it. The drawing may get cluttered if constraints of all types are displayed at the
same time, so we provide a set of check boxes to specify which constraints should be
shown:

Figure 5.46 Choosing constraint types to display

 71

Chapter 6 Evaluation
The ideal evaluation of the system would be to use the produced descriptions in a

sketch recognition engine and test the recognition accuracy. The user would teach a
symbol to the system and then draw multiple variations of it for the engine, noting false
positives, false negatives, and the correct answers. As the recognition engine in the
Design Rationale Group is still under development, the learning system had to be
evaluated in isolation.

Our primary goal was to test whether the system accurately generalized the
symbols using knowledge about human perception of geometry. We wanted to verify that
the system captured the same properties that a person would pay attention to when
learning a new symbol. To do this, we conducted a user study where subjects were shown
an unknown symbol and several variations of it and asked whether each variation should
be recognized as the original symbol. We tested whether the users accepted and rejected
the same variations that would be accepted or rejected using the system’s description.

In some domains, people may use domain-specific information to decide what
properties are important. For example, in electric circuit symbols we know that the lines
representing wires can have arbitrary length. Because the system only uses geometric
information, we picked symbols from military planning – a domain the subjects were not
likely to be familiar with and where symbols have little resemblance to the actual objects
they represent.

We describe the procedure and the results of the study in the next sections.

6.1 Data set and study procedure
We used 9 symbols from the military planning domain (Figure 6.1). We chose the

symbols to have a varying number of primitives and a varying number of contained
known shapes.

Figure 6.1 Test symbols

We examined the descriptions produced for these symbols and designed 20
variations for each one: 10 variations that would be accepted and 10 variations that would
be rejected by the description produced by our system. Here is the procedure we used to
do this:

The goal in constructing the variations was to approximate a uniform distribution
of the changes across different properties and across degrees of change. To produce each

 72

variation we randomly picked to change one of the eight parts of the description
(preferably without violating other constraints):

• Touch constraints: connects, meets, intersects, etc.
• Orientation
• Relative position
• Relative length and size
• Relative orientation
• Group aspect ratio
• Group relative position
• Number of primitives

We also randomly chose either a large or a small degree of change.
The original symbols and the variations were drawn with very low levels of noise

(i.e. satisfying all constraints almost perfectly) so that people would not attribute the
variations to sloppy drawing, but rather see them as routine changes to the original
symbol. The variations that the system would accept or reject were randomly mixed.
Appendix B presents the complete data set.

The subjects completed the study online. The drawings were shown one-at-a-time,
each drawing occupying the whole browser window. They had to vote on 20 variations
for each of the 9 original symbols. Before voting on each variation, the subjects were
shown the original symbol, so that they would remember what it looked like. They were
asked whether the variation should be recognized as the original symbol. Only “yes” and
“no” options were provided. The subjects could take as much time as they needed to
decide on the answer. We also provided the option to look at the original symbol again by
pressing the “Back” button on the browser, in case the subjects were uncertain. The order
of the original symbols was randomized for each subject to average out potential order
effects. We surveyed 33 subjects getting judgments for a total of 180 variations (20 for
each symbol).

6.2 Results
Before evaluating the agreement of the system with human judgment it is important

to see whether the subjects agreed with each other. For each variation, we recorded the
majority answer and the percentage of people who gave that answer (majority
percentage). The chart in Figure 6.2 gives an assessment of the agreement levels.

The y-axis shows the proportion of the total of 180 variations for different levels of
majority percentage on the x-axis. For almost 40% of the variations the subjects had high
agreement – the majority percentage was above 90%. On more than half of data set the
majority percentage was higher than 80%. Appendix B gives the detail on the votes and
majority percentages for each variation in the data set.

 73

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

50 - 60% 60 - 70% 70 - 80% 80 - 90% 90 - 100%

majority percentage
(% people giving majority vote)

pr
op

or
tio

n
of

 th
e

va
ria

tio
ns

 in
 th

e
da

ta
 s

et

Figure 6.2 Levels of agreement for different variations

The chart shows that there were still a substantial number of cases (more than a
third) where the subjects did not reach agreement, i.e. the opinions were strongly divided.

Examples include:
(The question was: should the variation be recognized as the original symbol?)

Original symbol: Variation: Original symbol: Variation:

 Yes: 47% Yes: 50%

Original symbol: Variation: Original symbol: Variation:

 Yes: 53% Yes: 44%

Figure 6.3 Variations that caused divided opinions.

We think that it is reasonable to expect divided opinions in some cases. The degree
of perceptual similarity is a continuous property, yet we were forcing the subjects to
make a binary decision. Subjects may differ on the exact threshold for when they
consider a variation to be dissimilar enough from the original symbol to be rejected.

For such borderline cases, it makes less sense to evaluate the performance of the
system (i.e. level of agreement with people) since people did not even agree with each

 74

other. Hence, we report the results not only for the complete data set, but also for the
subsets of variations with high agreement (with majority ≥ 80% and majority ≥ 90%).

The chart in Figure 6.4 shows the evaluation results. We measured the proportion
of times that the system agreed with the majority answer. For the whole data set the
system achieved 77%. For the subset of the variations with higher intra-subject
agreement (majority percentage ≥ 80%) the system achieved 83%. For an even smaller
subset of data with the highest agreement (majority percentage ≥ 90%) the performance
was 95%. Notice that the baseline performance is 50%. The system would agree with
people half of the time if it guessed randomly.

77%
83%

95%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

all majority 80-
100%

majority 90-
100%

Data subsets

%
 c

as
es

 w
he

re
 th

e
sy

st
em

 a
gr

ee
d

w
ith

 th
e

m
aj

or
ity

System
Baseline

Figure 6.4 Percentage of cases where the system agreed with the majority answer

The system captures enough relevant information about the symbol to perform
significantly above chance level. Yet there is still a lot of room left for improvement. In
the next section we analyze the kinds of mistakes the system makes in order to assess
what would be required to achieve better performance.

Notice that the data set was created to reflect variations that are produced by
picking changes uniformly over all properties in the description. This set in not
necessarily representative of the variations that people would be likely to produce when
intending to draw the original symbol in a sketch. So we do not think these results are an
accurate assessment of recognition accuracy. This is only an assessment of agreement in
perceptual judgment. To measure potential recognition performance, a better way to
construct the data set would be by showing people the original symbol and then asking
them to draw it several times.

6.3 Analysis of disagreements
The system has produced both false positives and false negatives, though there

were significantly fewer false positives.

 75

6.3.1 False positives
These are cases where the variation fit the description, but the majority vote was

not to recognize it as the original symbol. These cases fall into two categories.
In the first category the variation introduces connects, intersects, meets, or touches

constraints that originally were not in the description. For example:

Original symbol: Variation: Original symbol: Variation:

 No: 72% No: 89%

Figure 6.5 Variations accepted by the description but rejected by the majority of the
subjects

These examples fit the description, because the symbols are represented in the
system by specifying which constraints should hold, rather than which constraints should
not hold. Yet the majority of the subjects reject the variation because, perceptually, the
symbol is altered significantly. To correct this kind of error the system would have to be
extended to support “must-not” constraints. We think that these constraints would only be
relevant for “touch” properties, like “connects”, “meets”, “intersects”, “touches”,
“overlaps”, etc., since these are most perceptually salient and can strongly alter the
perception of the symbol.

The second type of disagreement is caused by the lack of explicit symmetry
detection in the system. The variation below satisfies the description of the original
symbol, even though it lacks symmetry. The majority, however, rejects the example
(though this is only a slight majority).

Original symbol: Variation:

 No: 53%

Figure 6.6 Variation that fits the description but is rejected by the majority

In summary, false positives arise because the system does not capture some
properties of the symbol that have high perceptual relevance. The system does not look
for these properties due to limited description vocabulary.

 76

6.3.2 False Negatives
80% of the errors the system made were false negatives. These examples represent

cases where variations of the symbol violate some description constraints, but the
majority of the subjects still consider them similar enough to the original symbol to be
recognized.

One type of false negatives occurs when the aspect ratio of a subpart of the symbol
is changed, but people do not consider this change of the symbol significant:

Original symbol: Variation: Original symbol: Variation:

 Yes: 89% Yes: 92%

 a) b)

Figure 6.7 Changes in aspect ratio

Figure 6.7a, for example, is described by the system as having a “vertical
rectangle,” hence the rectangle in the variation of the symbol does not fit the description.
Yet, for the subjects, it seems sufficient to just see a rectangle, regardless of the aspect
ratio. We think that this effect may be related to the number of primitives in the symbol.
When there is a lot of other detail in the symbol, people seem to generalize the
representation on the composing sub-shapes more. The system could attempt to mimic
this by recording more general versions of the previously learned shapes from the domain
graph (Figure 6.8), if symbol containing the shape has a large number of other primitives.
Currently the system always prefers the most specific versions.

Figure 6.8 Domain graph that the system searches for previously learned shapes

Another type of false negatives we encountered were a few cases where the system
found “longer” constraints to be important and included them in the description, yet the
majority of the subjects accepted the variation with these constraints violated, for
example:

rectangle

vertical rectangle horizontal rectangle

 77

Original symbol: Variation rejected by the system:

 Yes: 84% (the majority accepted the variation)

Figure 6.9 Changes in relative length constraints

Notice that in the variation of the symbol, the small top part of the symbol is no
longer horizontally elongated as it is in the original symbol. This causes it to violate the
“longer” constraints that were established between the “top” and the “sides” of this part.

Perceptually this is similar to the aspect ratio problem that we described for the
previous example. The difficulty, however, is that the system does not identify a separate
aspect ratio property for the top part of the symbol that it could reason with. It also does
not have a mechanism to downgrade importance of individual “longer” constraints in one
part of the symbol due to the rest of the symbol containing a lot of primitives. These are
important problems to investigate in the future.

The system also made one error related to position constraints:

Original symbol: Variation rejected by the system, but accepted by majority:

 Yes: 74%

Figure 6.10 Changes in position constraints

The system records, for example, that top-left side of the diamond in the original
symbol is to the lower-left of the short vertical line above. When the two vertical lines are
moved apart enough, the constraint no longer holds. The perceptual change is not very
significant, however. It would have been enough to record that the vertical lines are
above the top sides of the diamond.

All the examples above are composed of several high-level shapes: diamond, oval,
rectangle, etc. It seems that the most perceptually relevant feature is the combination of
these high-level shapes, and people pay less attention to the individual detail. The system
needs to include more mechanisms for decreasing relevance of constraints on the
primitives that constitute detail, when multiple previously learned shapes are present.

 78

Chapter 7 Future Work
This chapter describes our ideas on improving the system’s descriptive ability,

achieving better relevance ranking by using domain information, and alternative
approaches to the user interface.

7.1 Extending the system’s descriptive ability
To represent a larger variety of symbols the system would need support for arcs,

curved elements, and symbols that contain an arbitrary number of certain elements (like a
resistor, or a dashed line). In addition, many symbols could be described more concisely
if the system used higher-level constraints that include more than two primitives. The
next sections outline potential steps towards reaching these goals.

7.1.1 Arcs
Incorporating arcs into the system would require defining a set of constraints that

correspond to singular and non-singular arc properties. The table below shows a possible
list of such properties:

Properties (singular ones shown in bold) Example
Arc angle: half-arc, >half-arc, <half-arc

Arc orientation: top, top-right, right,
bottom-right, bottom, bottom-left, left,
top-left

Constraints defined similar to those for lines and ovals could also be used with

arcs:
• Connects, meets, intersects, touches.
• Position constraints (referring to the center of the bounding box): above, right,

left, below, upper-right, upper-left, lower-left, lower-right, above-centered,
below-centered, left-centered, right-centered, inside, inside-centered

• Same-size, larger (referring to largest dimension of the bounding box)
Parameterized constraints like meets, connects, intersects, and touches would refer

to the points on the arc in the table below:

 79

Part Notation Example
First point on the arc in clockwise
direction

cw1

Any point between cw1 and the
center of the arc curve

cw1c

Center of the arc curve C
Any point between cw2 and the
center of the arc curve

cw2c

Second point on the arc in
clockwise direction

cw2

The descriptive power of these properties and constraints would have to be tested

on a variety of symbols.

7.1.2 Curve representation
A large number of symbols contain spirals, waves, and other curved elements:

Figure 7.1 Symbols with curved elements

In many systems curves have been represented by parameters that do not easily
capture the important perceptual characteristics. For example, consider Bezier curves.
The small circles in Figure 7.2 shows the four Bezier control points for the drawn curve.
Two of them do not lie on the curve and it would be hard for a person to judge the
positions of these points when looking at a given curve.

Figure 7.2 Control points for the Bezier curve

Bezier control points are not the perceptually salient elements of the curve. The
positions of the endpoints, the existence of an inflexion point, and the “angular distance”
traversed by the two segments separated by the inflexion point are probably more
perceptually relevant. A description in these terms would capture the perceptual
similarity between different curves in Figure 7.3, even though some of them are
composed from more than one Bezier curve segment or from two arcs:

cw1

c
cw1c

cw2

cw2c

 80

Figure 7.3 Perceptually similar curves

Future work should explore perceptually salient properties of curves to create a
qualitative vocabulary for describing curved symbols.

7.1.3 Arbitrary number of elements
Symbols often have components that can be repeated an arbitrary number of times:

Figure 7.4 Symbols with varying number of primitives. a) Resistor symbol. b) Symbol
from military planning. c) Symbol for ground or surface in mechanical engineering

Learning such configurations presents two challenges. The system first has to be
able to identify a group of repeated components and, second, decide whether an arbitrary
number of them is acceptable. Goldmeier’s studies provide some hints on how this may
be done. He distinguishes the geometric elements perceived by people as either material
or form. Consider two experiments in Figure 7.5. Which of the b and c is more similar to
a?

Figure 7.5 Which of b and c is more similar to a?

Even though uniform scaling of the symbol should not, supposedly, affect
similarity, most of the subjects pick the example where the line width or the size of the
small triangles remains the same (answers b and c respectively), i.e. the symbol that is not
a uniformly scaled version of the original. Goldmeier argues that the lines of a certain

a) b) c)

a)

b) c)

a)

b) c)

 81

width or the small triangles are perceived as material that makes up a larger shape (form).
For the symbol to remain perceptually more similar, he claims that “the form is best
preserved by proportional enlargement; material properties are best preserved by keeping
the measurements of the material elements constant” [Goldmeier, 1972] However, ask
yourself the same question for Figure 7.6:

Figure 7.6 Which of b and c is more similar to a?

Most subjects choose b. In this case smaller triangles are not considered material.
The difference between the cases when repeated elements can be viewed as material and
when they should be viewed as form is best illustrated by Figure 7.7:

Figure 7.7 Which of b and c is more similar to a?

In the first experiment most subjects have picked c, treating the lines as material.
However, in the second experiment they chose b. The presence of exactly three lines is
perceived as a salient part of the form (structure) of the symbol.

According to Goldmeier, when the repeated elements are small compared to the
size of the symbol and there is a large number of them, people start perceiving them as
material rather than form and hence become insensitive to the variation in number of such
components. The difficult task is defining quantitatively the terms “small relative to the
symbol size” and “large number of elements.”

7.1.4 Higher-level constraints
Due to the current restriction of the vocabulary to binary constraints, the system

cannot capture certain constraints, even though they are perceptually salient. For
example, the system does not represent symmetry constraint, which has been sown by
Goldmeier to be a very important property [Goldmeier, 1972].

a)

b) c)

a)

b) c)

a)

b) c)

 82

Figure 7.8 Symmetrical symbol

Tension lines, however, increase the relevance of some constraints violating which
would break the symmetry. This sometimes helps implicitly capture the horizontal or
vertical symmetry requirement. In Figure 7.8, for example, the tension line heuristic
causes the system to increase the relevance of constraints “same-length: (l1 l2) (l3 l4)”
and “above-centered (15 l6).” In general, any two primitives symmetrical across the
vertical or horizontal axis will form one or more tension lines, helping increase the
relevance of constraints on their relative position and sometimes length:

Figure 7.9 Symmetrical segments form tension lines

However, currently there is no mechanism to require that the two elements should
be equidistant from the symmetry axis or that they should have the same absolute slope.
Hence, the system produces the same constraints for the symmetrical and non-
symmetrical symbols in the pair of examples below, missing the fact that there is an
important perceptual difference between them.

Figure 7.10 Pairs of symbols that would result in the same description

l6

l5

l4 l3

l2 l1

 83

In addition to the non-binary symmetry constraint, the system would also benefit
from adding constraints like interval equality between pairs of lines and alignment of
several endpoints of different primitives. With these constraints symbols like the ones in
Figure 7.11 could be described more concisely:

Figure 7.11 a) Symbol requiring interval equality constraints. b) Symbols requiring
alignment constraints

The only way the system currently allows constraining more than two primitives at
a time is through group constraints. Improving grouping would help identify more
accurate global constraints. The system supports only two grouping principles:
connectedness and familiarity of shape. Proximity, similarity, continuity, and closure
factors identified by gestalt psychologists [Wertheimer, 1923] need to be added to better
approximate perceptually relevant grouping of the primitives within the symbol. Drawing
order may possibly provide additional clues for grouping since we think that people will
be more likely to draw perceptually salient components consecutively, without overlap.

7.2 Knowledge of Other Symbols in the Domain
Using knowledge about other symbols in the domain would help the system

produce more adequate descriptions. Consider a simplified example, for the sake of
explanation: assume that the description produced for the capacitor symbol in Figure
7.12a below did not include the constraint “same-length l2 l3.”

Figure 7.12 a) Battery symbol. b) Capacitor symbol

The subsequently presented battery symbol in Figure 7.12b would then match the
capacitor description. The system should compare descriptions of different symbols in the
domain and ensure that they have different descriptions by updating them appropriately.
The correct action to take in this case would be to include the constraint “same-length l2
l3” to the capacitor description and “longer l3 l2” to the battery description. However, the
challenge is that this is not the only constraint that distinguishes these symbols – there is
also the relative length of lines l1 and l4, for example. Which distinguishing constraints
should the system choose to include in the updated descriptions? We believe that it is
important to explore the use of perceptual ranking of constraints for making such choices.

l1 l2
l3

l4 l1
l2 l3

l4

a) b)

a) b)

 84

Note, for example, that the obstruction value for lines l4 and l1 is higher than for lines l2
and l3, hence the system would rank constraints between lines l2 and l3 higher on
perceptual importance. It is those constraints that are better candidates for inclusion in the
description.

7.3 Improved user interface
We have only started to explore the user interface for verifying the correctness of

the descriptions produced by the system. We have experimented with displaying the
constraints graphically, so that the user does not have to read the description. This
method still requires a lot of concentration from the user and the notation quickly gets
cluttered when the symbol has a lot of primitives.

The next section describes an alternative approach to checking produced
descriptions that is based on variations of the symbol.

7.3.1 Automatic generation of potential “near misses”
Instead of displaying constraints graphically, the system could show different

variations of the symbol that fit and do not fit the description and ask the user to accept or
reject them. Then it would modify the description based on the responses.

Figure 7.13 Military planning symbol

In Figure 7.13, the horizontal elongation of the rectangle and the oval may or may
not be a required constraint. One way to verify that would be to ask the user whether the
following examples should be recognized as the symbol:

Figure 7.14 Examples with questionable constraints removed

The system would remove the constraints that are violated in the accepted examples
and include missing constraints that differentiate the original symbol from the rejected
examples.

The space of variations may be too large to explore exhaustively. For example, if a
description contains 30 constraints and the option is to drop or keep each constraint, there
may be up to 230 ~ 1 billion variations. Even if we assume that it is enough to check each
constraint individually, the user would still have to look at 60 symbols. The main
challenge is to generate only the few variations that the system could benefit from, i.e. the
variations that explore the constraints that the system is “not sure” about.

 85

The system could take advantage of relevance scores to identify such constraints, as
they approximate the degree of perceptual salience. For example, there is no need to
check the constraints that have a high score (like connects or meets). Removing those
constraints would most likely produce a symbol that is significantly different and that the
user would reject. That would give no new information to the system. On the other hand,
varying constraints with scores near the filtering threshold is more likely to provide “near
misses” that the system can learn from, because its judgment may differ from that of the
user.

7.4 Relevance ranking for recognition robustness
A generic recognition engine will use the system’s descriptions to identify symbols

in user’s sketches. If relevance scores were included in the description, the engine could
use them for error-tolerant matching, making the recognition potentially more robust in
the cases when the description is too constraining. Consider, for example, one of the
constraints for the symbol in Figure 7.15.

Figure 7.15 Military symbol

The system decides that line l8 should be longer than l6 and l7. Now assume that it
is in fact incorrect, i.e. the user still wants the system to recognize the variations of this
symbol where these constraints do not hold. The system gave these constraints relevance
scores of 0.55, which are only slightly above the filtering threshold and lower than the
scores of most other constraints (e.g. connects has a score of 1.0 and meets has a score of
0.9). Error-tolerant recognition would proceed by computing the matching error by
summing the number of discrepancies between the input sketch and the constraints in the
description, weighted by their relevance scores. Any input with a total error below a
certain threshold would be considered to fit the description. When the description is
incorrectly overconstrained, the engine may still recognize the input symbol, as long as
the constraints that are required by the description but are missing from the input have
low relevance.

 86

Chapter 8 Conclusion
We have presented a system for learning shape descriptions from a single example

of a symbol. By explicitly putting in knowledge about human perception we attempt to
guide the generalization process. The generalization power derives from two sources:

1. Qualitative vocabulary of constraints based on perceptual singularities:

The vocabulary contains singular and non-singular terms, reflecting the property

values that people attend to (singularities) and aggregating values that they ignore (non-
singularities). This aggregation is an important initial generalization step.

In spite of the qualitative nature, the vocabulary is adequate for describing a large
variety of symbols because it captures perceptually salient properties that we expect to be
the basis for creation of graphical languages.

2. Perceptually inspired mechanisms for ranking constraints by relevance:

Constraints are assigned default relevance scores, based on their average perceptual

importance. In addition, obstruction, tension lines, and grouping mechanisms that take
into account the particular configuration of the primitives in the symbol cause these
scores to be increased or decreased. These mechanisms reflect the observation that people
pay attention to global properties of the symbol and that perceptual relevance of
constraints is context-dependent.

As shown on several examples the system is capable of adequately describing

complicated symbols with a lot of detail. We measure the success of the system in
learning a new symbol by how well it captures the properties that people would pay
attention to. The user study has shown that the system performs reasonably (83%) on the
examples where the subjects agreed among each other.

Future work on the system would include improving its descriptive ability by
providing support for curves and symbols with an arbitrary number of elements and by
extending the constraint vocabulary to support higher-level constraints like symmetry,
interval equality, and multiple alignments. As we have shown, knowledge about
perception may provide further clues on how to achieve these extensions.

 87

References

[Hammond and Davis, 2003] T. Hammond and R. Davis. LADDER: A Language

to Describe Drawing, Display, and Editing in Sketch Recognition. To appear in
Proceedings of IJCAI 2003

[Alvarado and Davis, 2002] C. Alvarado and R. Davis. A Framework for Multi-

Domain Sketch Recognition. AAAI Spring Symposium on Sketch Understanding, 2002.

[Hammond and Davis, 2002] T. Hammond and R. Davis. Tahuti: A Geometrical

Sketch Recognition System for UML Class Diagrams. 2002 AAAI Spring Symposium on
Sketch Understanding, 2002.

[Alvarado and Davis, 2001] C. Alvarado and R. Davis. Resolving ambiguities to

create a natural sketch based interface. Proceedings of IJCAI, 2001.

[Sezgin et al., 2001] M. Sezgin, T. Stahovich, and R. Davis. Sketch Based

Interfaces: Early Processing for Sketch Understanding. Proceedings of PUI, 2001.

[Sezgin, 2001] Metin Sezgin. Feature Point Detection and Curve Approximation

for Early Processing of Free-Hand Sketches. M.S. thesis, MIT, 2001

[Ullman, 1976] J. R. Ullman. An Algorithm for Subgraph Isomorphism. Journal of

the ACM, Vol. 23, No. 1, January 1976, pp. 31-42.

[Goldmeier, 1972] Erich Goldmeier. Similarity in Visually Perceived Forms.

Psychological Issues, Vol. 8, No. 1, 1972.

[Goldmeier, 1982] Erich Goldmeier. The Memory Trace: its formation and its fate.

1982.

[Arnheim, 1974] Rudolf Arnheim. Art and Visual Perception. University of

California Press, 1974.

[Ullman, 1990] D. G. Ullman. The Importance of Drawing in the Mechanical

Design Process. Computers & Graphics. Vol. 14, No. 2, pp. 263-274, 1990.

[Gross et al., 1996] Gross, M. D. and E. Do. Demonstrating the Electronic Cocktail

Napkin. Conference Companion. ACM Conference on Human Factors in Computing
(CHI ‘96), pp 5-6. 1996.

[Gross, 1996] M. D. Gross. The Electronic Cocktail Napkin – a computational

environment for working with design diagrams. Design Studies 17 (1996) 53-69. Elsevier
Science.

 88

[Gross and Do, 2000] Gross, M. D., E. Y.-L. Do, 2000. Drawing on the back of an
Envelope: a framework for interacting with application programs by freehand drawings.
Computers & Graphics 24(6): 835-849.

[Rubine, 1991] Rubine D. Specifying Gestures by Example. Computer Graphics,

Vol. 25, No. 4, July 1991.

[Winston, 1970] Patrick Winston. Learning Structural Descriptions from

Examples. Ph.D. thesis, MIT, 1970.

[Miller et al., 2000] E. G. Miller, N. E. Matsakis, P. A. Viola. Learning from One

Example Through Shared Densities on Transforms. Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, 2000.

[Arvo and Novins, 2000] J. Arvo. and K. Novins. Smart Text: A symthesis of

Recognition and Morphing. In Proc. of AAAI Spring Symposium on Smart Graphics, pp.
140-147, 2000.

[Arvo and Novins, 2000b] J. Arvo. and K. Novins. Fluid Sketches: Continuos

Recognition and Morphing of Simple Hand-Drawn Shapes. In ACM Symposium on User
Interface Software Technology, pp. 73-80, 2000.

[Igarashi et al., 1997] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.

Interactive Beautification: A Technique for Rapid Geometric Design. ACM Annual
Symposium on User Interface Software and Technology, pp.105-114, 1997.

[Di Fiore and Van Reeth, 2002] F. Di Fiore and F. Van Reeth. A Multi-level

Sketching Tool for “Pencil-and-Paper” Animation. AAAI Spring Symposium on Sketch
Understanding, 2002.

[Lipson and Shpitalni, 2002] H. Lipson and M. Shpitalni. Correlation-Based

Reconstruction of a 3D Object From a Single Freehand Sketch. AAAI Spring
Symposium on Sketch Understanding, 2002.

[Fonseca et al., 2002] M. J. Fonseca, C. Pimentel, and J. A. Jorge. CALI: An

Online Recognizer for Calligraphic Interfaces. Proc. AAAI Spring Symposium: Sketch
Understanding Workshop, 2002.

[Caetano et al., 2002] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge.

JavaSketchIt: Issues in Sketching the Look of User Interfaces. Proc. AAAI Spring
Symposium: Sketch Understanding Workshop, 2002.

[Landay and Meyers, 2001] J. A. Landay, B. A. Meyers, Sketching Interfaces:

Toward More Human Interface Design. IEEE Computer, 2001. 34(3): pp. 56-64.

 89

[Shilman et al., 2002] M. Shliman, H. Pasula, S. Russel, R. Newton. Statistical
Visual Language Models for Ink Parsing. In Proc. AAAI Spring Symposium: Sketch
Undestanding Workshop, 2002.

[Feguson and Forbus, 1999] R. W. Ferguson, K. D. Forbus. GeoRep: A Flexible

Tool for Spatial Representation of Line Drawings. Qualitative Reasoning Workshop,
1999.

[Connell, 1985] J. H. Connell. Learning Shape Descriptions: Generating and

Generalizing Models of Visual Objects. MIT AI Lab Tech Report 853, 1985.

[Calhoun et al, 2002] Calhoun, T. F. Stahovich, T. Kurtoglu, L. B. Kara, 2002.

Recognizing multi-stroke symbols. In AAAL 2002 Spring Symposium: Sketch
Understanding Workshop.

[Kurtoglu and Stahovich, 2002] T. Kurtoglu and T. F. Stahovich. Interpreting

Schematic Sketches Using Physical Reasoning. In AAAI 2002 Spring Symposium:
Sketch Understanding Workshop.

[Forbus and Usher, 2002] K. D. Forbus, J. Usher. Sketching for Knowledge

capture: A progress report. IUI’02, January 13-16, 2002

[Lin et al, 2002] J. Lin, M. Thomsen. J. A. Landay. A Visual Language for

Sketching Large and Complex Interactive Design. CHI 2002. Vol. 4. No. 1, 307-314

[Saund et al, 2002] E. Saund, J. Mahoney, D. Fleet, D. Larner, and E. Lank.

Perceptual Organization as a Foundation for Intelligent Sketch Editing. In AAAI 2002
Spring Symposium: Sketch Understanding Workshop.

[LeCun et al, 1995] Y. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S.

Denker, H. Drucker, L. Guyon, U.A. Muller, E. Sackinger, P. Simard, and V. Vapnik.
Comparison of Learning Algorithms for Handwritten Digit Recognition. In F. Fogelman
and P. Galinari, editors, Inter. Conf. on Artificial Neural Networks, pp. 53-60, Paris,
1995.

[Wertheimer, 1923] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt.

Psychologische Forschung, 4, 301-50. Translation in W. D. Ellis (ed.) A Source Book of
Gestalt Psychology. New York: H. B. J., 1938.

 90

Appendix A
Initial Constraints for the Symbol

connects:(l5.p2 l4.p2) (l5.p1 l2.p2) (l5.p2 l6.p1) (l4.p2 l5.p2) (l4.p1 l3.p2) (l4.p2 l6.
p1) (l3.p2 l4.p1) (l3.p1 l1.p1) (l2.p2 l5.p1) (l2.p1 l1.p2) (l1.p1 l3.p1) (l1.p2
 l2.p1) (l8.p1 l7.p2) (l8.p1 l6.p2) (l7.p2 l8.p1) (l7.p2 l6.p2) (l6.p1 l5.p2) (l
6.p1 l4.p2) (l6.p2 l8.p1) (l6.p2 l7.p2)
horizontal:(l3) (l2) (l6)
vertical:(l1)
pos-slope:(l5) (l8)
neg-slope:(l4) (l7)
above:(l7 l6) (l6 l8)
right:(l5 l1) (l4 l1) (l8 l1) (l7 l1)
below:(l8 l6) (l6 l7)
left:(l1 l5)
upper-right:(l5 l2) (l4 l2) (l3 l1) (l8 l2) (l7 l2) (l7 l5) (l6 l2) (l6 l5)
upper-left:(l4 l6) (l4 l8) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8) (l1 l2) (l1 l8)
lower-right:(l5 l3) (l4 l3) (l2 l1) (l8 l3) (l8 l4) (l7 l3) (l6 l3) (l6 l4)
lower-left:(l5 l7) (l2 l4) (l2 l6) (l2 l7) (l2 l8) (l1 l3) (l1 l4) (l1 l7)
above-centered:(l4 l5) (l3 l2) (l7 l8)
right-centered:(l8 l5) (l7 l4) (l6 l1)
perpendicular:(l5 l7) (l8 l7) (l7 l5) (l7 l8)
same-length:(l5 l1) (l5 l4) (l4 l1) (l4 l5) (l3 l2) (l2 l3) (l1 l4) (l1 l5) (l8 l7) (l7 l8)
longer:(l5 l7) (l5 l8) (l4 l7) (l4 l8) (l3 l1) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8)
(l2 l1) (l2 l4) (l2 l5) (l2 l6) (l2 l7) (l2 l8) (l1 l7) (l1 l8) (l6 l1) (l6 l4)
(l6 l5) (l6 l7) (l6 l8)

 91

Initial Constraints for the Symbol

connects:(l6.p1 l5.p2) (l6.p2 l4.p2) (l6.p2 l3.p2) (l5.p2 l6.p1) (l5.p1 l4.p1) (l5.p1 l1.p2) (l4.p2
l6.p2) (l4.p1 l5.p1) (l4.p2 l3.p2) (l4.p1 l1.p2) (l3.p2 l6.p2) (l3.p2 l4.p2) (l3.p1 l2.p2) (l2.p2 l3.p1)
(l2.p1 l1.p1) (l1.p2 l5.p1) (l1.p2 l4.p1) (l1.p1 l2.p1) (l10.p1 l9.p2) (l10.p1 l7.p1) (l9.p2 l10.p1)
(l9.p2 l7.p1) (l7.p1 l10.p1) (l7.p1 l9.p2)
meets:(l7.p2 l8.c)
non-elongated:(o11)
horizontal:(l4) (l2) (l8)
vertical:(l3) (l1) (l7)
pos-slope:(l10) (l6)
neg-slope:(l5) (l9)
above:(l4 l5) (l4 l6) (l2 l6) (l2 l10) (l10 l4) (l10 l6) (l10 l8) (o11 l6) (o11 l10) (l9 l4) (l9 l5) (l9 l8)
(l8 l6) (l7 l6)
right:(l3 l7) (l10 l1) (o11 l1) (l9 l1) (l8 l1) (l7 l1)
below:(l6 l2) (l6 l4) (l6 l10) (l5 l2) (l5 l4) (l4 l10) (l10 l2) (l9 l2) (l8 l10)
left:(l1 l7) (l10 l3) (o11 l3) (l9 l3) (l8 l3) (l7 l3)
upper-right:(l10 l5) (l10 l7) (o11 l5) (o11 l9) (l3 l4) (l3 l5) (l3 l6) (l3 l8) (l2 l1) (l2 l5) (l2 l9) (l8
l5) (l7 l5)
upper-left:(l2 l3) (l1 l4) (l1 l5) (l1 l6) (l1 l8) (l9 l6) (l9 l7)
lower-right:(l5 l1) (l10 o11) (l4 l1) (l4 l9) (l3 l2) (l3 l9) (l3 l10) (l3 o11) (l8 l9) (l7 l9) (l6 l1) (l6
l7) (l6 l8) (l6 l9) (l6 o11)
lower-left:(l5 l3) (l5 l7) (l5 l8) (l5 l9) (l5 l10) (l5 o11) (l4 l3) (l1 l2) (l1 l9) (l1 l10) (l1 o11) (l9
o11)
above-centered:(l2 l4) (l2 l7) (l2 l8) (l2 o11) (o11 l4) (o11 l7) (o11 l8) (l8 l4) (l7 l4) (l7l8)
right-centered:(l6 l5) (l3 l1) (l10 l9)
parallel:(l5 l9) (l10 l6)
same-length:(l6 l5) (l5 l6) (l4 l2) (l3 l1) (l2 l4) (l1 l3) (l10 l8) (l10 l9) (l9 l8) (l9 l10) (l8 l9) (l8
l10)
longer:(l6 l8) (l6 l9) (l6 l10) (l5 l8) (l5 l9) (l5 l10) (l4 l5) (l4 l6) (l4 l7) (l4 l8) (l4 l9) (l4 l10) (l3
l2) (l3 l4) (l3 l5) (l3 l6) (l3 l7) (l3 l8) (l3 l9) (l3 l10) (l2 l5) (l2 l6) (l2 l7) (l2 l8) (l2 l9) (l2 l10) (l1
l2) (l1 l4) (l1 l5) (l1 l6) (l1 l7) (l1 l8) (l1 l9) (l1 l10) (l7 l5) (l7 l6) (l7 l8) (l7 l9) (l7 l10)

 92

Appendix B
This appendix describes the test set that was used for the evaluation of the system.

For each symbol (at the top of the page) there are 20 variations, shown in the same order
as they were presented to the subjects. For each variation the subjects were asked whether
it should be recognized as the original symbol. The subsequent table shows the answer
according to the description produced by the system and the answer given by the
subjects. It also includes the information on the majority percentage. The entries for the
variations on which the subjects disagreed with the system are highlighted.

 93

 Symbol 1

 94

System: YES YES NO YES

Majority: YES YES YES YES

Majority %: 97% 89% 89% 100%

System: YES NO NO YES

Majority: YES NO NO YES

Majority %: 66% 63% 53% 89%

System: NO NO YES NO

Majority: NO NO NO NO

Majority %: 50% 92% 89% 76%

System: YES YES NO NO

Majority: YES YES YES NO

Majority %: 74% 89% 55% 92%

System: NO YES NO YES

Majority: YES YES YES YES

Majority %: 92% 84% 89% 79%

 95

 Symbol 2

 96

System: YES NO YES NO

Majority: YES NO YES NO

Majority %: 100% 76% 93% 73%

System: YES NO NO YES

Majority: YES NO NO YES

Majority %: 71% 56% 54% 80%

System: YES YES YES NO

Majority: YES YES YES NO

Majority %: 78% 76% 85% 83%

System: NO NO YES NO

Majority: NO NO YES NO

Majority %: 80% 90% 100% 76%

System: NO YES YES NO

Majority: YES YES YES YES

Majority %: 93% 73% 85% 59%

 97

 Symbol 3

 98

System: YES YES NO YES

Majority: YES YES YES YES

Majority %: 95% 95% 75% 95%

System: NO NO YES NO

Majority: YES YES YES NO

Majority %: 83% 75% 100% 85%

System: NO YES YES NO

Majority: NO YES NO YES

Majority %: 83% 85% 53% 90%

System: NO NO YES YES

Majority: NO NO YES YES

Majority %: 75% 93% 90% 93%

System: YES NO YES NO

Majority: YES NO NO NO

Majority %: 90% 93% 50% 98%

 99

 Symbol 4

 100

System: YES NO NO YES

Majority: YES YES YES YES

Majority %: 95% 79% 50% 84%

System: YES NO YES NO

Majority: YES YES YES NO

Majority %: 84% 84% 100% 61%

System: YES NO YES NO

Majority: YES NO YES YES

Majority %: 84% 55% 84% 63%

System: NO YES NO YES

Majority: NO YES YES YES

Majority %: 97% 84% 82% 97%

System: NO NO YES YES

Majority: NO NO YES YES

Majority %: 92% 100% 89% 74%

 101

 Symbol 5

 102

System: YES NO YES NO

Majority: YES NO YES NO

Majority %: 90% 53% 98% 88%

System: YES YES NO YES

Majority: YES YES NO YES

Majority %: 78% 68% 73% 73%

System: NO YES NO NO

Majority: YES YES NO NO

Majority %: 50% 73% 73% 90%

System: NO YES NO NO

Majority: YES YES NO YES

Majority %: 85% 80% 100% 78%

System: YES NO YES YES

Majority: YES NO YES YES

Majority %: 90% 85% 53% 78%

 103

 Symbol 6

 104

System: NO NO YES NO

Majority: YES YES YES YES

Majority %: 79% 92% 82% 64%

System: NO YES NO YES

Majority: NO YES YES YES

Majority %: 100% 97% 87% 95%

System: NO YES YES NO

Majority: NO YES YES NO

Majority %: 79% 97% 79% 95%

System: NO YES YES YES

Majority: NO YES YES YES

Majority %: 69% 92% 97% 69%

System: NO YES YES NO

Majority: YES YES YES NO

Majority %: 72% 79% 59% 95%

 105

 Symbol 7

 106

System: NO NO YES NO

Majority: YES YES YES YES

Majority %: 62% 82% 97% 85%

System: YES NO NO YES

Majority: YES NO NO NO

Majority %: 79% 97% 92% 72%

System: NO YES NO YES

Majority: NO YES NO YES

Majority %: 79% 79% 97% 100%

System: YES YES NO YES

Majority: YES NO NO YES

Majority %: 85% 51% 82% 79%

System: NO NO YES YES

Majority: NO YES NO YES

Majority %: 95% 69% 59% 85%

 107

 Symbol 8

 108

System: NO NO NO NO

Majority: NO NO NO YES

Majority %: 67% 56% 92% 85%

System: NO NO YES YES

Majority: NO YES YES YES

Majority %: 56% 90% 59% 95%

System: NO YES YES YES

Majority: YES YES YES YES

Majority %: 64% 92% 85% 92%

System: YES NO YES YES

Majority: YES YES YES YES

Majority %: 87% 82% 95% 92%

System: NO YES NO YES

Majority: YES NO NO YES

Majority %: 74% 54% 79% 82%

 109

 Symbol 9

 110

System: NO NO YES NO

Majority: NO NO YES NO

Majority %: 73% 100% 97% 97%

System: NO YES YES YES

Majority: NO YES YES YES

Majority %: 95% 86% 92% 62%

System: YES NO YES YES

Majority: YES NO YES NO

Majority %: 95% 97% 89% 81%

System: NO YES YES YES

Majority: NO YES YES YES

Majority %: 95% 86% 95% 95%

System: NO NO NO NO

Majority: YES NO YES NO

Majority %: 84% 70% 70% 97%

 111

