
Modeling Online Sketching as a Dynamic Process

Tevfik Metin Sezgin MTSEZGIN@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32-235 Vassar st., Cambridge MA, 02139 USA

Abstract
Online sketching is an incremental and dynamic
process; sketches are drawn over time, one stroke
at a time, and can be captured with devices such
as Tablet PCs and pen based PDAs. We have
shown that the dynamic properties of the sketch-
ing process contain valuable information that can
aid recognition. We describe a framework that
can handle complex user input. Specifically, we
show how we can take advantage of the regulari-
ties in sketching even when users draw objects in
an interspersed fashion.

1. Introduction

Online sketching is an incremental and dynamic process:
sketches are drawn one stroke at a time and be captured
in devices such as Tablet PCs and pen based PDAs. This
is unlike scanned documents or pictures which only cap-
ture the finished product. The dynamic properties of the
sketching process contain valuable information that can aid
recognition (Sezgin & Davis, 2005). In particular, in a
number of domains the order in which users lay out strokes
during sketching contains patterns and is predictable. We
have presented ways of taking advantage of these regular-
ities to formulate sketch recognition strategies (Sezgin &
Davis, 2005). Here, we describe a framework that can han-
dle more complex user input. Specifically, we show how
we can take advantage of the regularities in sketching even
when users draw objects in an interspersed fashion (e.g.,
start drawing object A, draw B before fully completing A,
come back and complete drawing A).

2. Sketching as a stochastic process

Previous work has shown that in certain domains, stroke
ordering follows predictable patterns and can be modeled
as a Markovian stochastic process. Work in (Sezgin &
Davis, 2005) shows how sketches of mechanical engineer-
ing drawings, course of action diagrams, emoticons and
scenes with stick-figure can be modelled and recognized
using Hidden Markov Models. In these domains, HMM-
based modeling and recognition is possible because objects
are usually drawn one at a time using consistent drawing or-

ders. The HMM-based approach exploits these regularities
to perform very efficient segmentation and recognition.

The HMM-based recognition algorithm scales linearly with
the scene size, but requires each object to be completed be-
fore the next one is drawn. In certain domains, although
there is a preferred stroke ordering, objects can be drawn in
an interspersed fashion. For example, in the domain of cir-
cuit diagrams, people occasionally stop to draw wires con-
nected to the pins of a transistor before they complete the
transistor. One way of thinking about such a drawing sce-
nario is that, instead of a single Markov process, we have
multiple processes that generate observations, and the task
is to separate observations from these processes. We model
such drawing behavior as a multimodal stochastic process
that can switch between different individual Markov pro-
cesses, each of which captures drawing orders for individ-
ual objects. Although the new approach can also be de-
scribed as a HMM, it is more easily described and under-
stood using its dual representation as a dynamic Bayesian
net (DBN).

Our approach to modeling interspersed drawing behavior
is general enough to allow an arbitrary number of objects
in a domain to be drawn in an interspersed fashion, but in
practice people usually intersperse at most two objects. For
example, in the circuit diagrams, unlike other circuit com-
ponents, transistors have three connection points (emmiter,
collector, base), and sometimes people draw the wires con-
necting to these points when the transistor is only par-
tially drawn, causing interspersing of transistor and wire
strokes. We have created a model specialized to handle
interspersing of wires with other components in circuit di-
agram sketches. 1

3. The network structure

Next we introduce our DBN model for circuit diagrams
which handles interspersed drawing orders while still al-
lowing polynomial time inference in the number of strokes.

We model the circuit diagram sketching process using a

1Although it is also possible to have a model general enough
to allow interspersing between any two objects, we use this spe-
cialized model due to the nature of interspersing in our domain.



Figure 1. The network structure for two slices of the DBN for modeling circuit diagrams. Contents of the OBS node is shown in Fig. 2.

Figure 2. Details of the observation node. L and RL are Gaussian
nodes that capture length and relative length. O and RO capture
orientation and relative orientation. P/N and Q are mixture param-
eters for the relative features.

DBN (Fig. 1). The square nodes are discrete and the cir-
cular nodes are continuous. All nodes except the OBS node
are hidden. The observation node OBS captures a number
of features computed using the properties of primitives de-
rived from strokes and the details of this node is shown in
Fig. 2.

The hidden nodes in Fig. 1 and their connections specify
the generative process that models the way in which ob-
jects in the domain are drawn. In our domain, we have
five objects: NPN transistors, resistors, capacitors, batter-
ies, and wires. Nodes N, R, C, B and W model the way in
which these objects are drawn. Based on the value of the
MUX node, only one of these processes is activated. The
END node is simply a binary variable that species whether
the latest observation completes drawing of the currently
active object.

4. Node descriptions

We now describe each node in detail. We will adopt the
generative process view of the model and describe the dy-
namics of the model from that perspective, but the reader
should keep in mind that the model is used for assigning
probabilities to series of observations obtained by encod-

ing sketches (inference) and not for generating observation
sequences.

4.1 The MUX variable

MUX keeps track of the main object the user is drawing
(which can be interspersed with wires if it is a transistor).
The actual observables are generated based on the value of
this node and the individual object process nodes (i.e., N, R

etc.). As a result, if there are N different objects that the
user can draw, then the MUX node has N states. In addition,
this node enters a special state when a pair of objects are
being interspersed. There is a unique state for each pair of
objects that can be interspersed. In our case, because only
wires can be interspersed with transistors, there is only one
such state. This is the state that we enter when the user
starts drawing wires in the middle of a transistor and enter-
ing this state serves as a reminder that after the wires are
drawn, we should complete that transistor that we initially
started. So the MUX state has N +1 states (N for individual
objects and one special state for interspersing wires with
transistors).

MUXt+1 is conditioned on MUXt and ENDt. The reason-
ing behind this conditioning is twofold: if there is no
wire/transistor interspersing, the user may start drawing a
new object only if the previous object is completed, and
the probability of drawing a particular class of object may
depend on the type of the last object.

4.2 The object variables (N, R, C, B and W)

These variables capture how individual objects are gener-
ated. In isolation, each node captures the state transition
dynamics for an object, and when paired with the obser-
vation node, each node can be seen as an HMM that can
generate features for that object. These nodes can change



Figure 3. Examples of sketches

state only if they are active (as indicated by the MUX node).
For example, the R node can change state only if the MUX

node is in its resistor state; and in order to handle inter-
spersing the W node can change state only if the MUX node
is in its wire or the user is interspersing wires with tran-
sistors states. State transitions are Markovian, with each
node conditioned on its value from the previous time slice.
Finally the initial frame contains uniform object priors for
the object nodes (N’, R’, C’, B’ and W’)

4.3 The END variable

This discrete binary node is conditioned on one of the ob-
ject variables, (i.e., at any time, only one of the arcs coming
from the object variables is active). The choice of which
parent is active is governed by the value of MUX. This is an
example of the switching parent mechanism of DBNs that
we use. The dotted arrow from MUX to END indicates that
MUX is the parent that controls the switching behavior for
parents of END, and only one of the the dashed arrows from
the object variables to END is active based on the value of
MUX.

4.4 The OBS variable

This is another example where we have switching parent
behavior in our model. As in the END variable, the OBS vari-
able is conditioned on only one of the object variables as
determined by the value of the MUX variable. The details of
the OBS node is shown in Fig. 2 (P/N, Q, L, RL, O and RO). L

and RL are Gaussian nodes that capture length and relative
length. O and RO capture orientation of the current primi-
tive and the relative orientation with respect to the previous
primitive. O and RO are continuous variables modelled as
mixtures of Gaussians, while P/N and Q are the mixture vari-
ables that respectively model positive/negative slope for O

and the quadrant of the current primitive with respect to the
previous primitive for RO.

5. Implementation and results

In order to test our model, we collected circuit diagrams
from electrical engineers. We asked users to draw multi-
ple instances of circuits shown in Fig. 3. We collected ten
examples of each circuit for a total of fifty circuits. Our
current results are limited to data from a single user, but we

believe they serve as a proof of concept.

5.1 Training

In order to train and test our model, we labeled the data
by assigning object labels to groups of strokes. During
training, in addition to the original observable node OBS,
the values of MUX and END nodes were supplied, thus the
only hidden nodes were the individual object nodes.

5.2 Classification

Once the model is trained, classification is performed by
computing the most likely assignment to the MUX variable
in each frame for the observation sequence derived from a
given sketch.

5.3 Recognition performance

We used instances of the first four circuits in Fig. 3 as train-
ing examples and tested our system on all instances of the
last circuit in Fig. 3. With only one example of circuits
1-4, we obtained a 73% correct classification rate. Us-
ing two and three examples of circuits 1-4 resulted in 89%
and 93% correct classification rate consecutively. In cases
where there were interspersing, we were able to detect in-
terspersing 67% of the cases.

These results suggest that even as few as four examples can
yield good recognition rates, and increasing the number of
training examples results in better recognition rates even if
the examples come from the same circuit. In addition the
results suggest that the conceptual mechanism required to
detect interspersed drawing works. We expect the recogni-
tion performance to get better with more training data and
more data collection is currently underway.

Research Support
This research is funded by the MIT iCampus project and
Project Oxygen.

References

Sezgin, T. M., & Davis, R. (2005). HMM-based efficient
sketch recognition. International Conference on Intelli-
gent User Interfaces, San Diego CA January 2005.


