
Modeling Sketching as a Dynamic Process

Tevfik Metin Sezgin MTSEZGIN@CSAIL.MIT.EDU

Randall Davis DAVIS@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32-235 Vassar st., Cambridge MA, 02139 USA

Abstract

Online sketching is an incremental and dynamic
process; sketches are is drawn one stroke at a
time and can be captured with devices such as
Tablet PCs and pen based PDAs. We have shown
that the dynamic properties of the sketching pro-
cess contain valuable information that can aid
recognition. We describe a framework that can
handle complex user input. Specifically, we show
how we can take advantage of the regularities in
sketching even when users draw objects in an in-
terspersed fashion.

1. Introduction

Online sketching is an incremental and dynamic process:
sketches are drawn one stroke at a time and be captured
in devices such as Tablet PCs and pen based PDAs. This
is unlike scanned documents or pictures which only cap-
ture the finished product. The dynamic properties of the
sketching process contain valuable information that can aid
recognition (Sezgin & Davis, 2005). In particular, in a
number of domains the order in which users lay out strokes
during sketching contains patterns and is predictable. We
have presented ways of taking advantage of these regular-
ities to formulate sketch recognition strategies (Sezgin &
Davis, 2005). Here, we describe a framework that can han-
dle more complex user input. Specifically, we show how
we can take advantage of the regularities in sketching even
when users draw objects in an interspersed fashion (e.g.,
start drawing object A, draw B before fully completing A,
come back and complete drawing A).

2. Sketching as a stochastic process

Previous work has shown that in certain domains stroke
ordering follows predictable patterns and can be modeled
as a Markovian stochastic process. Work in (Sezgin &
Davis, 2005) shows how sketches of mechanical engineer-
ing drawings, course of action diagrams, emoticons and
scenes with stick-figure can be modelled and recognized

using Hidden Markov Models. In these domains, HMM-
based modeling and recognition is possible because objects
are usually drawn one after the other using consistent draw-
ing orders. The HMM-based approach exploits these regu-
larities to perform very efficient segmentation and recogni-
tion.

The HMM-based recognition algorithm scales linearly with
the scene size, but requires each object to be completed be-
fore the next one is drawn. In certain domains, although
there is a preferred stroke ordering, objects can be drawn
in an interspersed fashion. For example, in the domain of
circuit diagrams, people occasionally stop to draw wires
connecting to the pins of a transistor before they complete
the transistor. One way of thinking about such a draw-
ing scenario is that, instead of a single Markov process,
we have multiple processes that generate observations, and
the task is to separate observations from these processes. 1

We model such drawing behavior as a multimodal stochas-
tic process that can switch between different individual
Markov processes, each of which captures drawing orders
for individual objects. Although the new approach can
also be described as a HMM, it is more easily described
and understood using its dual representation as a dynamic
Bayesian net (DBN).

Our approach to modeling interspersed drawing behavior
is general enough to allow an arbitrary number of objects
in a domain to be drawn in an interspersed fashion, but
in practice people usually intersperse at most two objects.
For example, in the circuit diagrams, unlike other circuit
components, transistors have three connection points (em-
miter, collector, base) sometimes people draw the wires
connecting to these points when the transistor is only par-
tially drawn, causing interspersing of transistor and wire
strokes. We have created a model specialized to handle
interspersing of wires with other components in circuit di-
agram sketches. 2

1This is similar to the data association problem problem in
signal processing and computer vision except at each time slice,
the observation comes from a one of multiple potential models.

2Although it is also possible to have a model general enough
to allow interspersing between any two objects, we use this spe-



Figure 1. The network structure for two slices of the DBN for modeling electronic circuits.

3. The network structure

Next we introduce our DBN model for circuit diagrams
which handles interspersed drawing orders while still al-
lowing polynomial time inference in the number of strokes.

We model the circuit diagram sketching process using a
DBN (Fig. 1). The square nodes are discrete and the circu-
lar nodes are continuous. Nodes 1-6 (dark blue) are hidden
and 6-12 (light blue) are observed. The rounded rectan-
gle groups the observable nodes, and is used primarily to
indicate that the incoming arrows connect to all the nodes
inside the rounded rectangle. Here is a brief description of
each node in Fig. 1

• MODE is a binary variable that monitors whether the
user is interspersing any object with wires.

• The MUX variable is a multi-valued discrete node that
chooses one of the object processes.

• The OBJECT variable captures the drawing order for in-
dividual circuit symbols.

• BEGIN is a binary variable and is set to true if the user
has started drawing a new object.

cialized model due to the nature of interspersing in our domain.

• END is a binary variable and is set to true if the user
has finished drawing a new object.

• The remaining nodes are the observable variables of
the model. They encode the observed ink in terms of
primitive class of the ink (e.g., line, circle), and ge-
ometric features such as length, orientation, relative
length and relative orientation.

3.1 The MODE variable

MODE is set to off when there is no interspersing of wires
with other primitives. The node MODE at time slice t + 1
(MODEt+1) is conditioned on the nodes MUXt and ENDt.
These arcs ensure that for objects that don’t get interspersed
with wires, MODEt+1 doesn’t switch to the on mode un-
less the user has just finished drawing an object. MODE also
controls the state transition behavior of the object HMMs
through the arc to OBJECT. This ensures that the object
HMMs preserve their current state when the user draws a
wire.

3.2 The MUX variable

MUX keeps track of the main object the user is drawing
(which can be interspersed with wires if it is a transistor).
The actual observables (nodes [6:12]) are controlled by the



value of this node as well as other nodes such as MODE, BE-

GIN and OBJECT. If there are N different objects that the user
can draw (not including the wires), then MUX has N states.
MUXt+1 is conditioned on MODEt, MUXt and ENDt. The rea-
soning behind this conditioning is threefold: the user may
start drawing a new object (other than a wire) only if the
previous object is completed; the probability of drawing a
particular class of object may depend on the type of the
last object; and finally if MODEt is on, OBJECTt+1 should
maintain its state from the previous time slice.

3.3 The BEGIN and END variables

These discrete binary nodes are both conditioned on the OB-

JECT variable and the individual object processes (i.e., NPN,
LAMP). When the user starts or ends an object, these nodes
are set on and off accordingly. For example, the BEGIN node
is set to true if the current object process selected by OB-

JECT is producing the first observation of a new object.

3.4 The OBJECT variable

OBJECT captures the drawing order of individual objects.
MUX and OBJECT define the set of HMMs that capture the
drawing order of individual objects. In addition to the
Markovian dependency on MODEt, OBJECTt and ENDt, OB-

JECTt+1 is also conditioned on the current MODE and MUX

variables.

3.5 The observable variables

The observable nodes of our model are in the rounded rect-
angle in Fig. 1 (T, P/N, Q, L, RL, O and RO). The discrete bi-
nary variable T encodes the type of the current primitive
(circle, line). L and RL are Gaussian nodes that capture
length and relative length. O and RO capture orientation
of the current primitive and the relative orientation with re-
spect to the previous primitive. O and RO are continuous
variables modelled as mixtures of Gaussian, while P/N and
Q are the mixture variables that respectively model posi-
tive/negative slope for O and the quadrant of the current
primitive with respect to the previous primitive for RO.

The relative orientation and relative length features com-
pute the change in these values for current and previous
primitives. We expect these values to be reliable features
for time slices that do not correspond to the beginning of
a new object. This is because, for time slices that corre-
spond to object beginnings, the previous primitive belongs
to another object, hence the conditioning on the BEGIN.

4. Progress and implementation issues

We have collected circuit diagrams from electrical engi-
neers. We annotated the data and are currently working on

an initial implementation of the above model. The MODE

and SRC state pair act as switching parent nodes for the
OBJECT node. This poses some numerical problems in the
standard junction tree algorithm used for inference. We are
working on ways of avoiding this problem by using numer-
ically stable learning and inference algorithms.

Research Support

This research is funded by the MIT iCampus project and
Project Oxygen.

References

Sezgin, T. M., & Davis, R. (2005). HMM-based efficient
sketch recognition. International Conference on Intelli-
gent User Interfaces, San Diego CA January 2005.


