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ABSTRACT
This paper shows how viewing sketching as an interactive
process allows us to model and recognize sketches using
Hidden Markov Models. With the increasing availability of
tablet notebooks and pen-based PDAs, sketch based inter-
action has gained attention as a natural interaction modal-
ity. Current sketch recognition architectures treat sketches
as images or a collection of strokes, rather than viewing
sketching as an interactive and incremental process. We
report results of a user study indicating that in certain do-
mains people have preferred ways of drawing objects. We
show how the consistent ordering of strokes, when present,
can be used to perform sketch recognition efficiently. This
novel approach enables us to have polynomial time algo-
rithms for sketch recognition and segmentation, unlike con-
ventional methods with their exponential complexity.

Keywords Sketch recognition, Enabling input technolo-
gies, Interpretation of user input, Intelligent user interfaces

1. INTRODUCTION
Sketches help us convey ideas, guide our thought process,

and serve as documentation [2]. Most importantly, sketching
is a natural input modality of increasing interest [9]. Rec-
ognizing their value, several authors have suggested sketch-
based systems that use sketching as a natural input modal-
ity, emphasizing the user interfaces aspect [7, 6, 15, 10, 19,
23]. Complementing this work, others have suggested sketch
recognition systems that put more emphasis on recognizing
complex objects [4, 13, 12]. Our work is in the latter spirit
and proposes a novel approach to symbolic sketch recogni-
tion that takes advantage of the incremental and interactive
nature of sketching.

1.1 Terminology
By a sketch, we mean messy, informal hand-done drawings

as in Fig. 1. Specifically we are interested in recognizing
sketches of objects that can be described and recognized
using structural methods, the class of sketches that has been
the focus of the sketch recognition community [3, 4, 6, 13,
12]. We view sketching as an incremental process, defining a
sketch as a sequence of strokes. Strokes are collected using
a digitizing LCD tablet or a tablet computer that tracks
both x, y position and the time t for each point. Note that

Extended from Sezgin-Davis IUI 2005.

we know the order in which the strokes are drawn, and as
we describe below, stroke ordering is an important source of
knowledge in recognition.

We use the term sketching style to refer to a user’s pre-
ferred – although not necessarily conscious – stroke ordering
when drawing an object. We characterize the sketch recog-
nition process in terms of three tasks:

• Segmentation: The task of grouping strokes so that
those constituting the same object end up in the same
group. At this point it is not known what object the
strokes form. For example, in Fig. 1, the correct seg-
mentation gives us four groups of strokes.

• Classification: Classification is the task of determin-
ing which object each group of strokes represent. For
Fig. 1, recognition would indicate that the first object
in the sketch is a stick-figure.

• Labeling: Labeling is the task of assigning labels to
components of a recognized object (i.e., the head, the
torso, the legs and the arms in the stick-figure in
Fig. 1).

1.2 The problem
Current sketching systems are indifferent to who is using

the system, employing the same recognition routines for all
users. But a user study we have conducted clearly indicates
that although sketching styles may vary across users, people
have consistent sketching styles. We believe there is consid-
erable value in being able to capture these different styles
and use them to aid recognition. The framework we intro-
duce in this paper provides a mechanism for capturing an
individual’s preferred stroke ordering during sketching, and
uses it for efficient sketch recognition. We show how viewing
sketching as an incremental and interactive process provides
extra leverage in sketch recognition.

The framework we introduce also provides efficient seg-
mentation and classification. As noted in [12], treating
sketches as images leads to recognition algorithms with ex-
ponential time complexities: for example, subgraph isomor-
phism based methods have exponential time complexities,
while decision-tree based approaches have exponential stor-
age requirements. If we assume having m object classes each
object model with k components, a simple calculation shows
that in the worst case, recognition of an object on a sketching
surface with n strokes requires
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operations. In practice, the combinatorics get even worse



Figure 1: Example showing what we mean by a
sketch. Note the messy, freehand nature of the
drawings.

because sketches are inherently noisy, messy, and because
transformation space algorithms – a class of efficient recog-
nition algorithms [22] – are inapplicable due to the variation
in relative sizes of object components (e.g., relative sizes of
head and body in a stick-figure vary across figures). Ex-
ponential time and space requirements are unacceptable for
interactive sketch recognition. With the same motivation,
[12] suggests several heuristics that speed up recognition,
but don’t eliminate the exponential nature of the task. In
this paper we show how treating sketching as an incremental
and interactive process allows polynomial time recognition
algorithms.

We next describe our approach to the sketch recognition
problem; later sections give details on system implementa-
tion, results and evaluation. We conclude the paper with
discussion of related and future work.

2. APPROACH
Our approach is motivated by static and dynamic char-

acteristics of sketches and it is differentiated from work on
images by the need to deal with the dynamic character of
sketches.

2.1 Characteristics of Sketching
Sketches have a number of static properties (i.e., proper-

ties found in images, pictures, or scanned documents). Un-
like formal drawings, they are are messy (e.g., Fig. 1), and
are usually iconic (e.g., a human is often represented by a
stick-figure icon). Sketches are often compositional; a house,
for example, is formed by composing an isosceles triangle
and a rectangle, with the triangle above the rectangle.

In addition to these static properties, we can view sketch-
ing as a dynamic process that is incremental, interactive,
and highly stylized. By incremental we mean strokes are
put on the sketching surface one at a time. Sketch recogni-
tion can be viewed as interactive, because there is two way
communication, from the user to the computer in terms of
the drawn strokes and the editing operations, and from the
computer to the user in terms of the computer’s interpreta-
tion and display of the strokes and editing operations. Fi-
nally, sketching is highly stylized: people have strong biases
in the way they sketch, which in turn forms the basis for our
approach to solving the problems described above.

Figure 2: A sketching style diagram showing two
ways of drawing stick-figures

2.2 User study
We ran a user study to assess the degree to which people

have sketching styles, by which we mean the stoke order used
when drawing an item. For example, if one starts drawing a
stick-figure with the head, then draws the torso, the legs and
the arms respectively, we regard this as a style different from
the one where the arms are drawn before the legs (see Fig. 2).
Our user study asked users to sketch various icons, diagrams
and scenes from six domains. Example tasks included:

• Finite state machines performing simple tasks such as
recognizing a regular language.

• Unified Modeling Language (UML) diagrams depicting
the design of simple programs.

• Scenes with stick-figures playing certain sports.

• Course of Action Diagram symbols used in the military
to mark maps and plans.

• Digital circuit diagrams that implement a simple logic
expression.

• Emoticons expressing happy, sad, surprised and angry
faces.

We asked 10 subjects to sketch three sketches from each of
the six domains, collecting a total of 180 sketches. Requests
were given to subjects in an arbitrary order to intersperse
domains and reduce the correlation between sketching styles
used in different instances of sketches from the same domain.
Sketches were captured using a digitizing LCD tablet.

Fig.4 shows statistics on drawing orders. The maximum
possible drawing orders for each object shows the theoreti-
cal upper-bound on the number of possible drawing orders.
In theory, there are n! ways of drawing an object with n

subcomponents, but as seen here, only a few orders are ac-
tually preferred by the users. The table also shows the mean
number drawing orders for all users, rounded to the nearest
integer.

Our analysis of the sketches also involved constructing
each user’s sketching style diagrams. Sketching style dia-
grams provide a concise way of representing how different
instances of the same object are drawn. Nodes of a sketch-
ing style diagram correspond to partial drawings of an ob-
ject; nodes are connected by arcs that correspond to strokes.
Fig. 2 illustrates the sketching style diagram for the stick-
figure example described above.

Our inspection of the style diagrams and the statistics
revealed that:



Figure 3: Examples of the figures that the users
were asked to draw in the user study.

Object id (from Fig.3)
1 2 3 4 5 6 7

Number of subparts 5 5 5 6 8 8 6
Max theoretical # of orders 5! 5! 5! 6! 8! 8! 6!
Mean # of orders used 4 4 3 3 4 3 5

Figure 4: A summary of the statistics from our user
study for a subset of the symbols drawn by the users
(shown in Fig.3). Individual user statistics are not
included due to space limitations. Note that 5!=120,
6!=720 and 8!=40320. Users drew 30 or more ex-
amples of each object.

• People sketch objects in a highly stylized fashion. In
drawing the stick figure, for example, one of our sub-
jects always started with the head and the torso, and
finished with the arms or the legs (Fig.2).

• Individual sketching styles persist across sketches.

• Subjects preferred an order (e.g., left-to-right) when
drawing symmetric objects (e.g., the two arms) or ar-
rays of similar objects (e.g., three collinear circles).

• Enclosing shapes are usually drawn first (e.g., the
outer circle in emoticons, or the enclosing rectangles
in Fig. 3).

The user study confirmed our conjecture about the styl-
ized nature of sketching. In order to capitalize on this struc-
ture we have used Hidden Markov Models (HMMs) to model
different sketching styles. We next describe why we use
HMMs, briefly review HMMs, and explain how we applied
them to the problem at hand.

3. HMM-BASED RECOGNITION

3.1 The intuition
To give an intuitive explanation of why and how we use

HMMs for recognition, consider an over-simplified scenario.
Assume we have only two types of objects: skip-audio-track
and stop symbols (Fig. 5), and assume the user always draws
them using the same stroke ordering, indicated by the num-
bers. Our task is to recognize which of these objects is
present in a given scene that is known to contain only a single
instance of one of these objects. Suppose the user draws the
stop symbol as shown in Fig. 5. Assuming we can reliably
recognize the individual strokes as lines and tell whether
they are horizontal (H), vertical (V), negatively/positively
sloped (N, P), we can look at the order in which the user
drew the lines and classify the input as a stop symbol if we

Figure 5: Symbols for stop and skip-audio-track (on
the left), and a sketched stop symbol (right).

see the [V, H, V, H] ordering, and as a skip-audio-track
symbol for the [V, P, N, V] ordering.

The above approach works by encoding the user input to
generate an observation sequence describing the scene (e.g.
[V, H, V, H]), and comparing this sequence to its model
of how the user is known to sketch. The result of the com-
parison is binary, indicating whether we have a match. This
toy example provides insight into how stroke ordering can
be used for recognition in an over-simplified scenario. For
real sketches, we should meet the following requirements:

• Support for multiple classes and drawing or-
ders: We should be able to recognize multiple in-
stances of objects from many classes and accommodate
multiple drawing orders.

• Handling variations in drawing and encoding
length: The users should be able to draw freely, for
example, they should be able to draw the stop symbol
using three strokes instead of four (thus generating an
encoding of the sketch with only three observations
instead of four).

• Probabilistic matching score: The result matching
an observation sequence against a model should reflect
the likelihood of using that particular drawing order
for drawing the object. This is required if we are to
have a mathematically sound framework for combining
the outputs of multiple matching operations for scenes
with multiple objects, as we explain later.

• Learning: In practice, different drawing orders will
have similar subsequences. Ideally the system should
learn compact representations of drawing orders from
labeled sketch examples. In addition, if a user starts
the stop symbol with a vertical line 20% of the time,
this fact should be used by recognition and training.

The requirements above imply the need for a systematic
way of measuring how well observation subsequences match
individual object models and a well-founded method for
learning multiple drawing orders for objects. HMMs pro-
vide a well-founded, mathematically sound foundation for
learning models of sequential patterns from training data
and for testing how well a particular model matches a se-
quence of observations. Next we briefly review HMMs, then
show how to combine the results from individual HMMs to
perform recognition and segmentation.

3.2 Overview of HMMs
An HMM λ(A,B, π) is a doubly stochastic process for

producing a sequence of observed symbols. An HMM is
specified by three parameters A,B, π. A is the transition



probability matrix aij = P (qt+1 = j|qt = i), B is the obser-
vation probability distribution Bj(v) = P (Ot = v|qt = j),
and π is the initial state distribution. Q = {q1, q2, ...qN}
is the set of HMM states and V = {v1, v2, ...vM} is the set
of observations symbols. Readers are referred to [1] for a
comprehensive tutorial on HMMs.

In the toy example discussed above, the symbols vi cor-
respond to the encodings of input strokes in terms of lines
of different orientations. The states qi can be thought of
embedding the knowledge of having seen a particular obser-
vation sequence. The observation probabilities Bj(v) give
us the probability of observing each of the primitives given
our current state. A captures the state transition dynamics.

Given an HMM λ(A, B, π) and a sequence of observations
O = o1, o2, .., ok, we can efficiently determine how well each
model λ accounts for the observations by computing P (O|λ)
using the Forward algorithm; compute the best sequence of
HMM state transitions for generating O using the Viterbi
algorithm;1 and estimate HMM parameters A, B and π to
maximize P (O|λ) using the Baum-Welch algorithm.2

3.3 Modeling with HMMs

3.3.1 Encoding
Sketches must be encoded to generate observation se-

quences for recognition. We encode strokes using the Early
Sketch Processing Toolkit described in [3] which converts
strokes into geometric primitives. We encode the output of
the toolkit to convert sketches into discrete observation se-
quences using a codebook of 13 symbols; four to encode lines:
positively/negatively sloped, horizontal/vertical; three to
encode ovals: circles, horizontal/vertical ovals; four to en-
code polylines with 2, 3, 4, and 5+ edges; one to encode com-
plex approximations (i.e., mixture of curves and lines); and
one symbol to denote two consecutive intersecting strokes.
The choice of an encoding scheme is an important issue that
can affect recognition accuracy. As we show, we obtained
very promising results with this encoding.

Because instances of the same object sketched in different
styles may have encodings of different lengths, we formulated
two frameworks for training and recognition that use fixed
and variable training examples respectively.

3.3.2 Modeling with fixed input length HMMs
Assume we have n object classes. Encodings of train-

ing data for class i may have varying lengths, so let Li =
{li1, li2, ...lik} be the distinct encoding lengths for class i.
We partition the training data into K =

Pn

i=1
|Li| sets such

that each partition has training data for the same object
with the same length. Now we train K HMMs, one for each
set, using the Baum-Welch method. Each class i is repre-
sented by |Li| HMMs, and we have an inverse mapping that
tells us which HMM corresponds to each class.

For isolated object recognition, we compute P (O|λi) for
each model λi using the Forward procedure with the obser-
vation sequence O generated by encoding the isolated ob-
ject. λi with the highest likelihood gives us the object class.
Unfortunately isolated object recognition requires the input

1We use this information in determining if a sequence of
observations describe a complete object.
2This is how we learn probabilistic models of how the user
draws objects from drawing examples.

sketch to be presegmented, which is usually not the case,
and segmentation is itself a hard problem.

Interpretation of a complex scene requires generating hy-
potheses for the whole scene. That is, it requires segment-
ing the entire observation sequence into subsequences and
assigning models to these segments so that all the strokes in
the scene are accounted for. This requirement of accounting
for all strokes implies that interpretations should be chosen
so that they form a globally coherent interpretation for the
whole scene.

The hypothesis generation should be efficient, so combi-
natoric approaches are ruled out. The fact that individual
HMMs return probability values makes it easy to define the
objective for this stage, namely, choose interpretations that
maximize the probability corresponding to the entire scene.
This is an optimization problem that we solve using dy-
namic programming implemented in the form of a shortest
path problem.

The shortest path in a graph G(V, E) that we generate
gives us the segmentation. We then perform classification
as described above. The graph G(V, E) that we build for seg-
mentation is distinct from the graphs that represent HMM
topologies. Segmentation and recognition begins by building
the graph G(V, E) such that: V consists of |O| vertices, one
per observation, and a special vertex vf denoting the end of
observations. Let k be the input length for model λi. Start-
ing at the beginning of the observation O, for each obser-
vation symbol Os, we take a substring Os,s+k and compute
the loglikelihood of this substring given the current model,
log(P (Os,s+k|λi)). We then add a directed edge from ver-
tex vs to vertex vs+k in the graph with an associated cost of
|log(P (Os,s+k|λi))|. If the destination index s + k exceeds
the index of vf , instead of trying to link vs to vs+k, we put a
directed edge from vs to the final node vf . We set the weight
of the edge to |log(P (Os,|O||λi))|. Here Os,|O| is the suffix

of O starting at index s.3 We complete the construction of
G by repeating this operation for all models.

In the constructed graph, having a directed edge from ver-
tex vi to vj with cost c means that it is possible to account
for the observation sequence Oi,j with some model with a
loglikelihood of −c. The constructed graph may have multi-
ple edges connecting two vertices, each with different costs.
By computing the shortest path from v1 to vf in G, we
minimize sum of negative loglikelihoods, equivalent to max-
imizing the likelihood of the observation O. The indices of
the shortest path gives us the segmentation. Classification
is achieved by finding the models that account for each com-
puted segment.

A nice feature of the graph-based approach is that while
the shortest path in G gives us the most likely segmentation
of the input, we can also compute the next k-best segmen-
tations using a k-shortest path algorithm. This information
can be used by another algorithm for dealing with ambigu-
ities or by the user, as done in speech recognition systems

3The ability to do recognition when the scene is not yet
complete is a major challenge in recognition that most other
systems sidestep by requiring the user implicitly or explicitly
aid segmentation. Adding these special edges from vs to
vf for s + k > |O| allows our segmentation and recognition
algorithms to work even if the user hasn’t completed drawing
the current object while preserving global consistency. This
feature is a major strength of our approach. We leave out
a detailed discussion and evaluation results on this feature
due to lack of space.



with n-best lists.

3.3.3 Modeling using HMMs with variable length
training data

The formulation above makes the construction of the
graph G easy because each HMM is trained using fixed
length data. At each step s, we can easily compute the
destination of the edge originating from the current vertex,
vs, by adding the input length for λi to s. One drawback
of this method is that it requires an artificial partitioning of
the training data for each model, dictated by the variations
in description lengths for the same object. This artificial
partitioning reduces the total number of training examples
per model and prevents representing similar parts of differ-
ent sketching styles with the same HMM graph fragment,
which in turn reduces recognition accuracy and increases
cumulative model sizes.

We avoid the artificial partitioning of the training data by
grouping the data for all sketching styles together, and train-
ing one HMM per object class. After the training is over,
for each model we also estimate the probability of ending at
each state q of λi by getting the ending states for the train-
ing examples using the corresponding Viterbi paths. This
information is used during recognition.

The graph G has the same number of nodes as the previ-
ous approach. We generate it by iterating over each model
λi, adding edges with the following steps: for each observa-
tion symbol Os, we take a substring Os,s+k for each k ∈ Li.
Next we compute the loglikelihood for the observation given
the current model, log(P (Os,s+k|λi)), and add a directed
edge from vertex vs to vertex vs+k in the graph with an
associated cost of |log(P (Os,s+k|λi))|.

We augment each weight in the graph with a term that
accounts for the probability that Os,s+k is the encoding of a
complete object. This is achieved by penalizing edges corre-
sponding to incomplete objects, by testing whether the ob-
servation used for that edge puts λi in one of its final states
using the ending probabilities estimated earlier. Segmenta-
tion and recognition is achieved by computing the shortest
path in G as described above.

3.4 Implementation
We used BNT [16] written in MATLAB as our main HMM

engine. The graph construction, segmentation and recogni-
tion algorithms were implemented in Java and used proba-
bilities computed by the HMM Toolkit.

Because sketching is incremental, we preferred the Bakis
(left-to-right) HMM topology. This is done by initializing
aij = 0 for i > j for each model λi. B, π and the other
entries in A are set to random values preserving stochastic
properties. We used the maximum number of nodes in the
sketching style diagrams obtained from our user study to set
the number of states per HMM to 10.

4. EVALUATION
Evaluation of our work consists of two parts: Evaluation

of the HMM-based recognition approach with real data, and
a second experiment to compare the performance of our al-
gorithm to a baseline method.

4.1 Evaluation of the HMM-based recognition
Our first experiment was aimed at measuring the suit-

ability of our approach for sketch recognition and observing

Figure 6: The output of our system for the test case
shown in Fig.1 with drawing order CS2, CS1, stick
fig., and rectangle.

its behavior with test data containing clutter in the form of
spurious strokes or unknown objects.

We ran separate tests for the fixed and variable length
input HMMs, in each experiment learning 10 object classes
from the domains of geometric objects, military course of
action diagrams, stick-figure diagrams, and mechanical en-
gineering drawings. Training data was sketched using up to
6 styles with 10 examples per style to capture the variations
in encoding for each style. The examples were manually
segmented to obtain training data.

We compiled a test set – separate from the training data
– consisting of a total 88 objects sketched using the sketch-
ing styles present in the the training data. The fixed input
length HMM method had an accuracy of 96%. The variable
input length method’s accuracy was 81% without explicit
ending states and 97% with them.

An example of our system’s output for one of the test
sketches using the second method is in Fig. 6. In this exam-
ple, the course-of-action-diagram symbols, CS2, CS1 were
drawn first, followed by the stick-figure and then the rect-
angle.

We also tested both methods with sketches including neg-
ative examples to measure their robustness in presence of
unknown objects and spurious strokes. Two classes of neg-
ative examples were obtained by randomly inserting strokes
selected from other sketches, and by simulating the effects
of common low level recognition errors (e.g., classifying a
stroke as a polyline with two segments instead of a line).

We observed that negative examples usually inhibit cor-
rect segmentation of objects drawn right before and after,
but this effect remains bounded in a small neighborhood
and other objects in the scene are correctly recognized. For
example, for the fixed input length HMM method and 200
examples where we inserted one or more spurious strokes,
the size of the neighborhood of misrecognition was 1 in 57%
of the trials, 2 in 35% of the trials and 3 or more for the
remaining 8%. In 200 trials where we simulated common
low level errors at the single stroke level, 43.5% of the errors
were within a neighborhood of 1, 22.5% were within 2, 3%
were within 3 or more. In 7.5% of the cases, the low level
error caused only the object containing the erroneous stroke
to be misrecognized as two separate objects, thus not caus-
ing misrecognitions in preceding or following objects (local
neighborhood). In the remaining cases, errors by the low
level stroke processor did not result in objects being misrec-



Misrecognition neighborhood
1 2 3+

Fixed length 57% 35% 8%
Variable length 69% 25% 6%

Figure 7: Effects of spurious strokes on recognition
errors for fixed and variable input length HMMs.

Misrecognition neighborhood
none local 1 2 3+

Fixed length 23.5% 7.5% 43.5% 22.5% 3%
Variable length 28% 6% 44% 20% 2%

Figure 8: Effects of low level errors on recognition
errors for fixed and variable input length HMMs.

ognized because the training data naturally contained ex-
amples where low level processing had failed.

The results for spurious strokes are tabulated in Fig. 7
for both recognition methods, and Fig. 8 shows the effects
of low level errors. As seen in these tables, the variable
length input model does slightly better. We believe this is
because we have more training data per HMM in this model
(our original motivation for introducing the variable input
length method).

4.2 Running time comparison to a baseline
method

We compared the performance of our system to a base-
line method using feature-based pattern matching without
stroke ordering information. In this experiment, we aimed to
compare how the running time of our method and a feature-
based method scaled with respect to the number of unrec-
ognized objects in a scene. 4

To serve as a baseline, we implemented a feature-based
recognizer as used in [12, 4, 13].5 The baseline method
takes a structural object description as input and recog-
nizes objects by assigning scene elements to model parts
such that spatial relationships between scene elements agree
with those specified by the model. Object are described in
the object description language proposed by Hammond in
[18]. Fig. 9 shows the object description for the stick-figure.
The description lists the types and names of the components
forming the object and the constraints that must be satisfied
between them to declare a stick-figure instance present.

We also implemented a compiler that takes an object de-
scription and compiles it into a series of Java expert system
shell (Jess) rules that collectively act as a recognizer. The
compiler-generated rules enforce the constraints stated in
the object description, ensure that each scene element is as-
signed to only one object model, and ensure labeling of line

4Scalability is a must for being able to keep multiple hy-
potheses around for a larger portion of the sketch. This
makes it possible for the recognition system to avoid com-
mitting to interpretations immediately. This, in turn, allows
maintaining hypotheses for a larger portion of the sketch and
updating them when more data becomes available as it is the
case in online sketch recognition.
5An HMM-based approach without the stroke ordering in-
formation would be inappropriate as a baseline because it
would have very poor accuracy.

(define Stick-Figure
(components
(Ellipse head)
(Line body)
(Line leftArm)
(Line rightArm)
(Line leftLeg)
(Line rightLeg))

(constraints
c0 (meets leftArm rightArm leftArm.p1 rightArm.p1)
c1 (meets leftLeg rightLeg leftLeg.p1 rightLeg.p1)
c2 (left leftArm rightArm)
c3 (left leftLeg rightLeg)
c4 (touches leftArm body leftArm.p1)
c5 (touches rightArm body rightArm.p1)
c6 (meets leftLeg body leftLeg.p1 body.p2)
c7 (meets rightLeg body rightLeg.p1 body.p2)
c8 (touches body head body.p1)))

Figure 9: Stick-figure and the object model.

endpoints (as p1, p2) is consistent with the object model.
Recognition is done by an engine that efficiently does many
to many matching, avoiding duplicate computation by book-
keeping (see [17] for details).

The formulation of the baseline method as described above
is symbolic and feature-based. It doesn’t use training data,
and is not built to be robust in the face of errors in the low
level processing (e.g., a straight stroke incorrectly being bro-
ken into two collinear lines opposed to a single line). As a
result, object recognition naturally fails if there are low level
processing errors. To achieve a fair comparison, we ran the
baseline system on input without low level errors. This en-
sures perfect recognition for the baseline system, and allows
us to take measurements on the time needed for recognizing
scenes with varying number of objects.

We ran the baseline system on scenes containing up to 5
objects (rectangles or stick-figures in this case). To avoid
stroke orderings that are unusually ambiguous for the base-
line method, we measured the mean recognition times for
different drawing orders. We started the experiment with a
scene containing a single rectangle and measured the average
recognition time for different orders. Then, in an alternat-
ing manner, we added either a stick-figure or a rectangle to
get a new scene and measured the average recognition time
for different orderings again. We repeated the experiment
with up to 5 objects (three rectangles, two stick-figures).

Fig. 10 shows the average times for increasing number of
objects. The same figure also shows the running times for
the HMM-based method, using hand-drawn examples of the
same objects selected from the previously mentioned collec-
tion of 88 sketches. As seen in Fig. 10, the HMM-based
method scales very well with increasing number of objects.
This is because matching a model λi to an observation se-
quence of length T takes only O(N2T ) operations, where N

is the number of states in λi. This is linear in the num-
ber of observations. In fact, our method can process scenes
with up to 80 objects in less than a minute. Performance
of the baseline method gets worse as the number of objects
increases, because primitives of the additional object parts
act as distractors. The performance of the baseline method
can conceivably be improved using elaborate segmentation,
preprocessing or perceptual organization (e.g., [11]), but we
still regard the above results as promising.

Both the baseline method and the HMM-based method
were run on a Pentium III 933 MHZ machine with 512M
of memory, running Windows XP. These results show how
valuable drawing order information can be when users sketch
in predictable orders.

4.3 Discussion
Our evaluation also revealed some weaknesses of our ap-



Figure 10: Running times for the baseline feature-
based recognition system and our HMM-based
recognition system.

proach. HMMs are suited for sequence analysis. For objects
that produce single observations (objects drawn using a sin-
gle stroke), building an HMM amounts to deriving the prior
of a single observation and is not as useful in recognition.
Our technique thus works best with objects drawn with mul-
tiple strokes, or are encoded to yield multiple observations.

Also the scheme we presented relies on having sketch-
ing styles. The system will not be appropriate for domains
where there is no consistent sketching style. In that case,
alternate object recognition methods, which are relatively
more costly, can be used. Ideally the two methods would
exchange information to aid one another for higher speed
and accuracy.

Finally, because we use an orientation dependent encod-
ing, we recognize objects in their canonical orientations.
Orientation invariant recognition can be achieved by using
rotation invariant encodings or by using synthetic training
data obtained by rotating sketches in canonical orientations.

5. CONTRIBUTIONS
We have established through our user study that people

have preferred stroke orderings for drawing objects. Al-
though different people may have different preferences, indi-
vidual preferences are persistent and agree across sketches.

Based on the user study, we suggested a sketch recog-
nition framework fast enough to work in real-time. The
most notable feature of our framework is that it allows fast,
scalable segmentation and classification for sketches. Our
algorithms have polynomial time complexity, unlike com-
binatoric structural methods with exponential complexities.
Computing P (O|λi) in our model takes O(N2T ) operations,
for an HMM λi with N states, and an observation O of
length T .

One of the most attractive features of our system is that
it complements model-based sketch recognition systems that
don’t make assumptions about the drawing order but search
many possible segmentations for recognition. We use regu-
larities in sketching to do fast recognition. We believe the
two methods can work together: Given a scene, we can
run the faster HMM-based system first. If the HMM-based
system fails due to an unknown drawing order, the model-
based recognition system can be invoked. If the model-based
recognition system works successfully, the new drawing or-
der can be added to the training set for that object class,
enabling transparent learning of new styles without user in-

tervention.
Finally, our system does not require that the user fin-

ish drawing the current object before it can be run (i.e., it
doesn’t need to be told that user is done sketching). It can
be run after each stroke is added to the surface.

6. RELATED WORK
Several authors have suggested sketch-based systems that

use sketching as a natural input modality and emphasize the
user interfaces aspects [7, 6, 15, 10, 19, 23]. Here we limit
our review to systems whose main focus is recognition.

Work in [4] and [13] describe grammar-based statistical
approaches to sketch recognition. [5] presents a technique
for generating bottom-up recognizers from object descrip-
tions that perform exhaustive search. Our work naturally
complements these systems.

In [12], Mahoney and Fromherz describe a system for
sketch recognition from structural object descriptions using
subgraph isomorphism for structural matching. Their ap-
proach is designed for recognizing sketches in scanned docu-
ments. They also provide a detailed discussion of the expo-
nential time complexity of the structural sketch recognition
task, which we tackle in this paper using drawing order in-
formation.

In [23], although sketch recognition is not their main fo-
cus, Cohen et al. describe a hybrid neural network HMM
gesture recognizer for QuickSet to recognize isolated in-
stances of symbols. Our approach handles scenes with mul-
tiple objects, without making segmentation assumptions.

HMMs have previously been used to do online handwrit-
ing recognition [20]. Here we show the suitability of HMMs
for sketch recognition and use stroke-level observations as
opposed to pixel-level chain-code-like representations used
by the handwriting recognition community. Handwriting
has allographic and neuro-biomechanical variability [21],
which leads system designers to use chain-code-like repre-
sentations. High recognition rates that we obtained suggest
that although sketches have sequencing variability [21], they
can be recognized using stroke level geometric descriptors.
This is unlike handwriting recognition where using higher
level descriptors, although studied in the 1960s, was aban-
doned for techniques that use pixel level chain-codes and
quantization [20].

Our system also differs from numerous sketch recognition
systems by its ability to do recognition with only polynomial
time and space complexity, and by its utilization of drawing
order for capturing and modeling user sketching styles.

7. FUTURE WORK
We are investigating how varying the number of states

and graph topology affects system performance. We are
exploring ways of inducing these properties from examples
by applying Bayesian model merging techniques described
in [8].

An interesting research question is to investigate how
inter-object correlations can be captured using hierarchical
HMMs. In fact, the machinery we described for learning
variable length data using HMMs with explicit ending states
can be used for this task. This model has the structure of
a two level hierarchical HMM with uniform priors for the
lower level nodes corresponding to objects. With training
data from complete sketching sessions, domain specific tran-



sition probabilities for these nodes can be learned.
We are currently developing a new HMM architecture that

will allow us to integrate our system with a model based
sketch recognition architecture. This will allow us to collect
data for a comprehensive study that will stress-test the sys-
tem. Integrating the systems will be challenging because we
want the systems to share hypotheses and help each other.

We believe the HMM framework is also appropriate for
learning editing operations (e.g., deletion, selection) if cor-
responding observations are supplied during the learning
phase. This can be especially useful in detecting common
recognition errors. For example, if there is a chronic failure
(i.e., consistent misrecognition) in recognizing stick-figures
that occasionally requires the user to delete and redraw the
head to achieve correct recognition, this can be captured
by the HMM. It is an interesting research question to see to
what degree this information can later be used by the recog-
nition engine or by the programmer to modify recognition
criteria.

Finally, we are planning to explore the characteristics of
good encoding schemes. Ideally, a good encoding scheme
should result in good recognition rates, but should also cap-
ture perceptual features of objects that humans seem to at-
tend to. We believe features corresponding to perceptual
phenomena will be essential for the approach mentioned
above for detecting chronic recognition errors and generating
explanations for why they occur in a human understandable
language (i.e., “the recognition fails because the user has a
tendency towards not drawing the head circular enough”,
as opposed to ”because some obscure statistic of the stroke
causes misrecognition” inspired by [14]).

8. SUMMARY
We showed how viewing sketching as an interactive pro-

cess allows us to model and recognize sketches using Hidden
Markov Models. We presented results of a user study indi-
cating that in certain domains people have preferred ways of
drawing objects. We illustrated how the consistent ordering
of strokes naturally preferred by users can be exploited to
build models for individual users and perform sketch recog-
nition efficiently, without restricting the users to sketch in
a certain way. Our approach enables us to have polyno-
mial time algorithms for segmenting and recognizing com-
plex scenes unlike conventional methods with their exponen-
tial complexity.
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