
Scale-space Based Feature Point Detection for Digital Ink

Tevfik Metin Sezgin and Randall Davis
MIT Computer Science and Artificial Intelligence Laboratory

The Stata Center 235
Cambridge MA, 02139

{mtsezgin,davis}@csail.mit.edu

Abstract

Feature point detection is generally the first step in
model-based approaches to sketch recognition. Feature
point detection in free-hand strokes is a hard problem
because the input has noise from digitization, from nat-
ural hand tremor, and from lack of perfect motor control
during drawing. Existing feature point detection meth-
ods for free-hand strokes require hand-tuned thresholds
for filtering out the false positives. In this paper, we
present a threshold-free feature point detection method
using ideas from the scale-space theory.

Introduction
There is increasing interest in building systems that can rec-
ognize and reason about sketches. Among different ap-
proaches to sketch recognition, model-based recognition
techniques model objects in terms of their constituent ge-
ometric parts and how they fit together (e.g., a rectangle is
formed by four lines, all of which intersect at right angles
at four distinct corners). In order to be able to match scene
elements to geometric model parts, it is necessary to convert
the free-hand strokes in the scene into geometric primitives,
which results in a more concise and meaningful description
of the scene compared to a raw representation only in terms
of sampled pen positions. As described in (Sezginet al.
November 2001), feature point (i.e., corner) detection is a
major part of generating such geometric descriptions.

Issues
The major issue in feature point detection is the noise in the
data. We consider noise from two sources: imprecise motor
control and digitization. We describe characteristics of each
kind of noise with examples to make the distinction clear.

Imperfect motor control
Examples of noise due to imperfect motor control include
line segments that were meant to be straight but are not, or
corners that look round as opposed to having a precise turn-
ing point. This kind of noise gives sketches their “messy”
appearance. Easiest way of characterizing this kind of noise
is to ask if the noise would still be present if the user drew

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

very carefully perhaps using a ruler. If the answer is nega-
tive, then the noise is due to imperfect motor control.

Digitization noise
Digitization noise is the kind of noise that cannot be re-
moved even if one draws very carefully. Although visually
less apparent, it hinders feature point detection because dig-
itization corrupts curvature and speed data, which are pri-
mary sources of information in feature point detection. Dig-
itization noise can be present in the(x, y) positions and in
their timestamps. Source of the spatial digitization noiseis
the conversion to screen coordinates. For example, in the
Acer C110 Tablet PC, the pen positions are digitized into a
1024x768 grid. Spatial digitization can be so poor that the
point stream returned by digitization may occasionally have
points with repeating(x, y) positions.

In the same platform, timestamps too have digitization
noise. Because the concept of having digitization noise in
timestamps is less intuitive, we illustrate the point with an
example. Consider the stroke in Fig. 1 captured using an
Acer c110 Tablet PC. In this platform, we know that the
hardware samples points uniformly at a high resolution, dig-
itizing the timestamps once. Then, the operating system dig-
itizes the timestamps again at 100 Hz. Although the times-
tamps are good when read at the higher resolution directly
using Microsoft’s Tablet PC API, they get corrupted during
digitization. For the stroke in Fig. 1, Fig. 2 shows the devia-
tion of the digitized timestamps from their predicted ground
truth values computed by a least squares linear regression
line. The slope of the least squares regression gives us the
hardware sampling rate (which is about 133 Hz). The dif-
ference in the sampling frequencies causes a skew to accu-
mulate between the real timestamps of the points and those
obtained after digitization. The timestamps are occasion-
ally adjusted for the skew by repeating a timestamp, which
occurs about every four points with a standard deviation
of 0.53. Furthermore, although less frequent, the digitizer
consistently returns a point which is 11ms apart from the
previous one (as opposed to the more frequent 10ms time
difference). This happens roughly once every 92 points
(µ = 92.25, σ = 0.95). If we consider that the time res-
olution at a sampling rate of 100Hz is 10 ms, the deviations
in Fig. 2 which range between(−8, 6) with σ = 3.02ms
is quite significant. Digitization noise of this nature causes

nira
Text Box
Appeared in AAAI 2004 Symposium on Making Pen-Based Interaction Intelligent and Natural, 2004. pp.145-151.

Figure 1: A free-hand stroke captured using Acer c110.

0 50 100 150 200 250 300 350 400 450
−8

−6

−4

−2

0

2

4

6

Point Index

D
ev

ia
tio

n

Figure 2: This graph shows the deviation of the timestamps
from their linear regression line measured in milliseconds.

speed data computed by taking the time derivative of posi-
tion to be noisy.

Similar digitization noise behavior is also present in the
HP tc1100. Although different in nature, digitization noise
is also present for mouse based interfaces, digitizing tablets
such as the Wacom PL-400 and the Mimio, a whiteboard
capture hardware. The case of Acer c110 and HP tc1100 is
more interesting in part because there is a two layer digiti-
zation process.

The mainstream approach to dealing with noise is to use
filtering criteria based on thresholds preset either by handor
learned from labeled calibration data.

Another approach to dealing with noise is down-sampling
points in an effort to achieve a less noisy signal, but such
methods throw away potentially useful information when
they use fewer than all the points. Furthermore free-hand
sketching data is already sparse1. Here, we describe a fea-
ture point detection system that doesn’t depend on preset
thresholds or constants, and uses all the points in the stroke.

System Description
Feature Point Detection
Feature point detection is the task of finding corners (ver-
tices) of a stroke. We want to be able to find corners of piece-
wise linear strokes. For strokes that have curved parts (com-
plex shapes), we want to be able to identify points where

1Data sampled using a traditional digitizing tablet or a Tablet
PC may have resolution as low as 4-5 dpi as opposed to scanned
drawings with up to 1200-2400 dpi resolution. This is because
sometimes users draw so fast that even with high sampling rates
such as 100Hz only few points per inch can be sampled.

curved and straight segments connect. Our technique works
for piecewise linear shapes and complex shapes. Requiring
the ability to handle complex shapes complicates the prob-
lem significantly and rules out well studied piecewise linear
approximation algorithms.2 For strokes with curved por-
tions, we would like to avoid picking points on the curved
regions resulting in a piecewise linear approximation of the
curved regions.

Our approach takes advantage of the availability of point
timestamps during online sketching and combines informa-
tion from both curvature and speed data, while avoiding a
piecewise linear approximation.

Feature points are indicated by maxima of curvature3 and
the minima of pen speed. The strategy of corner detection
through local extrema in curvature and speed data would
work perfectly in an ideal noiseless setup. In practice it re-
sults in many false positives, because local extrema due to
the fine scale structure of the noise and those due to the high
level structure of the stroke get treated the same way.

One could try setting parameters to filter out these false
positives but selecting a priori parameters has the problemof
not lending itself to different scenarios where object features
and noise may vary. Our experience with the average based
feature detection method in (Sezginet al. November 2001)
is that its parameters need adjustment for different stroke
capture hardware and sometimes for different users. For ex-
ample, some people tend to make corners more rounded than
others. This requires adjusting the parameters of the system
for different conditions, a tedious task for the user who must
supply data on each platform for calibration purposes, and
for the programmer who should find a good set of param-
eters for each case. Our aim is to remove this overhead by
removing the dependence of our algorithms on preset thresh-
olds.

As indicated by our experiments, the extrema due to noise
disappear if we look at the data at coarser scales while those
due to the real feature points persist across coarser scales.
We base our feature point detection technique on our obser-
vation that features due to noise and real features exist at
different scales. We use the scale-space framework to derive
coarser and smoother versions of the data and use the way
the number of feature points evolves over different scales to
select a scale where the extrema due to noise don’t exist. We
give details of how we achieve this after a brief introduction
to the scale space concept.

Scale-space representation
An inherent property of real-world objects is that they ex-
ist as meaningful entities over a limited range of scales. The
classical example is a tree branch. A tree branch is meaning-
ful at the centimeter or meter levels, but looses its meaning
at very small scales where cells, molecules or atoms make

2Vertex localization for piecewise linear shapes is a frequent
subject in the extensive literature on graphics recognition. (e.g.,
(Rosin 1996) compares 21 methods).

3Defined as|∂θ/∂s| whereθ is the angle between the tangent
to the curve at a point and the x axis ands is the cumulative curve
length.

sense, or at very large scales where forests and trees make
sense.

A technique for dealing with features at multiple scales is
to derive representations of the data through multiple scales.
The scale-space representation framework introduced by
Witkin (Witkin 1983) allows us to derive such multi-scale
representations in a mathematically sound way.

The virtues of the scale-space approach are twofold. First,
it enables multiple interpretations of the data. These inter-
pretations range from descriptions with a fine degree of de-
tail to descriptions that capture only the overall structure of
the stroke. Second, the scale-space approach sets the stage
for selecting a scale or a set of scales by looking at how the
interpretation of the data changes and features move in the
scale-space as the scale is varied.

The basic idea behind the scale-space representation is to
generate successively higher level descriptions of a signal by
convolving it with a filter. As our filter, we use the Gaussian
defined as:

g(s, σ) =
1

σ
√

2π
e−s2/2σ2

whereσ is the smoothing parameter that controls the scale.
A higher σ means a coarser scale, describing the overall
features of the data, while a smallerσ corresponds to finer
scales containing the details. The Gaussian filter does not
introduce new feature points as the scale increases. This
means that as scales get coarser, the number of features (ob-
tained by extrema of the data in question) either remains the
same or decreases (i.e., neighboring features are merge caus-
ing a decrease in the total number of feature points). The
Gaussian kernel is unique in this respect for use in scale-
space filtering as discussed in (Yuille & Poggio 1986) and
(Babaudet al. 1986).

In the continuous case, given a functionf(x), the convo-
lution is given by:

F (x, σ) = f(x)∗g(x, σ) =

∫ ∞

−∞

f(u)
1

σ
√

2π
e(x−u)2/2σ2

du

We use the discrete counterpart of the Gaussian function
which satisfies the property:

n∑
i=0

g(i, σ) = 1

Given a Gaussian kernel, we convolve the data using the fol-
lowing scheme:

x(k,σ) =

n∑
i=0

g(i, σ)xk−bn/2+1c+i

There are several methods for handling boundary conditions
when the extent of the kernel goes beyond the end points. In
our implementation, we assume that fork−bn/2+1c+i < 0
andk − bn/2 + 1c + i > n the data is padded with zeroes
on either side.

Scale selection
The scale-space framework provides a concise representa-
tion of the behavior of the data across scales, but doesn’t tell
us what scale(s) to attend to. In our case, we would like to

Figure 3: A freehand stroke.

know what scale to attend to for separating noise from real
features. The next two sections explain how we used the fea-
ture count for scale selection for curvature and speed data.

Application to curvature data
We start by deriving direction and curvature data, then de-
rive a series of functions from the curvature data by smooth-
ing it with Gaussian filters of increasingσ. We build the
scale-space by finding the zero crossings of the curvature at
various scales.

Scale-space is the(x, σ)-plane wherex is the dependent
variable of functionf(.) (Witkin 1983). We focus on how
maxima of curvature move in this 2D plane asσ is varied.

Fig. 3 shows a freehand stroke and Fig. 4 the scale-space
map corresponding to the features obtained using curvature
data. The vertical axis in the graph is the scale indexσ (in-
creasing up); the horizontal axis ranges from 0 to 178 indi-
cating which of the points in the original stroke is calculated
to be a feature point. The stroke in question contains 179
points. We detect the feature points by finding the negative
zero-crossings of the derivative of absolute value of the cur-
vature. We do this at each scale and plot the corresponding
point(σ, i) for each indexi in the scale-space plot. An easy
way of reading this plot is by drawing a horizontal line at
a particular scale index, and then look at the intersection of
the line with the scale-space lines. The intersections giveus
the indices of the points in the original stroke indicated tobe
feature points at that scale.

As seen in this graph, for smallσ (near the bottom of the
scale-space graph), many points in the stroke are classified
as vertices, because at these scales the curvature data has
many local maxima, most of which are caused by the noise
in the signal. For increasingσ, the number of feature points
decreases gradually.

Our next step is to choose a scale where the false positives
due to noise are filtered out and we are left with the real ver-
tices of the data. We want to achieve this without having
any particular knowledge about the noise4 and without hav-
ing preset scales or constants for handling noise.

The approach we take is to keep track of the number of
feature points as a function ofσ and find a scale that pre-
serves the tradeoff between choosing a fine scale where the
data is too noisy and introduces many false positives, and
choosing a coarse scale where true feature points are filtered

4The only assumption we make is that the noise is at a different
scale than the feature size.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

Figure 4: The scale-space for the maxima of the absolute
curvature for the stroke in Fig. 3. This plot shows how the
maxima move in the scale-space. The x axis is the indices
of the feature points, the y axis is the scale index.

Figure 5: This plot shows the drop in feature point count (y
axis) for increasingσ (x axis) and the scale selected by our
algorithm for the stroke in Fig. 3.

out. For example, the stroke in Fig. 3, has 101 feature points
for σ = 0. On the coarsest scale, we are left with only
5 feature points, two of which are end points. This means
4 actual feature points are lost by the Gaussian smoothing.
Because the noise in the data and the shape described by the
true feature points are at different scales, it becomes possi-
ble to detect the corresponding ranges of scales by looking
at the feature count graph.

Fig. 5 gives the feature count graph for the stroke in Fig. 3.
In this figure, the steep drop in the number of feature points
that occurs for scales in the range[0, 40] roughly corre-
sponds to scales where the noise disappears, and the region
[85, 357] roughly corresponds to the region where the real
feature points start disappearing. Fig. 6 shows the scale-
space behavior during this drop by combining the scale-
space with the feature-count graph. In this graph, thex,
y, axisz, respectively correspond to the feature point index
[0,200],σ [0,400], and feature count [0,120]. We read the
graph as follows: givenσ, we find the corresponding loca-
tion in they axis. We move up parallel to thez axis until
we cross the first scale-space line.5 Thez value at which we

5The first scale-space line corresponds to the zeroth point inour
stroke, and by default it is a feature point and is plotted in the scale

0

50

100

150

2000

100

200

300

400

0

20

40

60

80

100

120

Figure 6: Joint scale-space feature-count graph for the stroke
in Fig. 3, simultaneously showing feature point movements
in the scale-space and the drop in feature point count for
increasingσ.

cross the first scale-space line gives the feature count at scale
indexσ. Now, we draw a line parallel to thex axis. Move-
ments along this line correspond to different feature indices,
and its intersection with the scale-space plot correspondsto
indices of feature points present at scale indexσ. The steep
drop in the feature count is seen in both Fig. 5 and Fig. 6.

Our experiments suggest that this phenomena (i.e., the
drop) is present in all hand drawn curves, except in singu-
lar cases such as a perfectly horizontal or perfectly vertical
line drawn at a constant speed. We model the feature count
- scale graph by fitting two lines and derive the scale where
the noise is filtered out using their intersection. Specifically,
we compute a piecewise linear approximation to the feature
count - scale graph with only two lines, one of which tries
to approximate the portion of the graph corresponding to the
drop in the number of feature points due to noise, and the
other that approximates the portion of the graph correspond-
ing to the drop in the number of real feature points. We then
find the intersection of these lines and use its x value (i.e.,
the scale index) as the scale. Thus we avoid extreme scales
and choose a scale where most of the noise is filtered out.

Fig. 5 illustrates the scale selection scheme via fitting two
lines l1, l2 to the feature count - scale graph. The algo-
rithm to get the best fit simply finds the indexi that min-
imizes OD(l1, {Pj}) + OD(l2, {Pk}) for 0 ≤ j < i,
i ≤ k < n. OD(l, {Pm}) is the average orthogonal distance
of the pointsPm to the linel, P is the array of points in the
feature count - scale graph indexed by the scale parameter,
and0 ≤ i < n wheren is the number of points in the stroke.
Intuitively, we divide the feature count - scale graph into two
regions, fit an ODR line to each region, and compute the or-
thogonal least squares error for each fit. We search for the
division that minimizes the sum of these errors, and select
the scale corresponding to the intersection of the lines for
which the division is optimal (i.e., has minimum error).

Interestingly enough, we have reduced the problem of
stroke approximation via feature detection to fitting linesto

space plot. This remark also applies to the last point in the stroke.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

Figure 7: The summed error for the two lines fit to Fig. 5
during scale selection for the stroke in Fig. 3.

the feature count graph, which is similar in nature to the
original problem. However, now we know how we want to
approximate the data (i.e., with two lines). Therefore even
an exhaustive search fori corresponding to the best fit be-
comes feasible. As shown in Fig. 7 the error as a function of
i is U shaped. Thus, if desired, the minima of the summed
error can be found using gradient descent methods, by pay-
ing special attention to not getting stuck in the local minima.
For the stroke in Fig. 3, the scale selected by our algorithm
is 47.

While we try to choose a scale where most of the false
maxima due to noise are filtered out, feature points at this
scale may still contain some false positives. This problem
of false extrema in the scale space is also mentioned in (Rat-
tarangsi & Chin 1992), where these points are filtered out by
looking at their separation from the line connecting the pre-
ceding and following feature points. They filter these points
out if the distance is less than one pixel.

The drawback of the filtering technique in (Rattarangsi
& Chin 1992) is that the scale-space has to be built differ-
ently. Instead of computing the curvature forσ = 0 and
then convolving it with Gaussian filters of largerσ to obtain
the curvature data at a particular scale, they treat the stroke
as a parametric function of a third variables, path length
along the curve. Thex andy components are expressed as
parametric functions ofs. At each scale, thex andy coordi-
nates are convolved with the appropriate Gaussian filter and
the curvature data is computed. It is only after this step that
the zero crossings of the derivative of curvature can be com-
puted for detecting feature points. Thex andy components
should be convolved separately because filtering out false
feature points requires computing the distance of each fea-
ture point to the line connecting the preceding and following
feature points, as explained above. This means the Gaussian
convolution, a costly operation, has to be performed twice
in this method, compared to a single pass in our algorithm.

Because we convolve the curvature data instead of the
x and y coordinates, we can’t use the method mentioned
above. Instead we use an alternate 2-step method to mini-
mize the number of false positives. First we check whether
there are any vertices that can be removed without increas-
ing the least squares error between the generated fit and the
original stroke points. The second step in our method takes
the generated fit, detects consecutive collinear6 edges and

6Measure of collinearity is determined by the task in hand. We

Figure 8: The input stroke (left) and the features detected by
looking at the scale-space of the curvature (right).

Figure 9: A very noisy stroke.

combines these edges into one by removing the vertex in be-
tween. After performing these operations, we get the fit in
Fig. 8.

One virtue of the scale-space approach is that works ex-
tremely well in the presence of noise. In Fig. 9 we have
a very noisy stroke. Figure 10 shows the feature-count
and scale-space behaviors respectively. The output of the
scale-space based algorithm is in Fig. 11. This output con-
tains only 9 points. For comparison purposes, the output of
the average based feature detection algorithm (Sezginet al.
November 2001) based on curvature is also given in Fig. 11.
This fit contains 69 vertices. (The vertices are not marked
for the sake of keeping the figure clean.)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

Figure 10: The feature count for increasingσ and the scale-
space map for the stroke in Fig. 9. Even with very noisy
data, the behavior in the drop is the same as it was for Fig. 3.

Application to speed change
We also applied the scale selection technique described
above to speed data. The details of the algorithm for de-
riving the scale-space and extracting the feature points are
similar to that of the curvature data except for obvious dif-
ferences (e.g., instead of looking for the maxima, we look
for the minima).

Fig. 12 has the scale-space, feature-count and joint graphs

consider lines with|∆θ| ≤ π/32 to be collinear.

a. (9) b. (7)

c. (69) d. (82)

Figure 11: Above, curvature (a) and speed (b) fits generated
for the stroke in Fig. 9 with scale-space filtering. Below, fits
generated using average based filtering (c,d). For each fit,
the number of vertices is given in parenthesis.

for the speed data of the stroke in Fig. 9. As seen in these
graphs, the behavior of the speed scale-space is similar to
the behavior we observed for the curvature data. We use
the same method for scale selection. In this case, the scale
index picked by our algorithm was 72. The generated fit is
in Fig. 11 along with the fit generated by the average based
filtering method using the speed data.

For the speed data, the fit generated by scale-space
method has 7 vertices, while the one generated by the av-
erage based filtering has 82. In general, the performance of
the average based filtering method is not as bad as this ex-
ample may suggest. For example, for strokes as in Fig. 3,
the performance of the two methods are comparable, but for
extremely noisy data as in Fig. 9, the scale-space approach
pays off when using curvature and speed data.

Because the scale-space approach is computationally
more costly7, using average based filtering is preferable for
data that is less noisy. There are also scenarios where only
one of curvature or speed data may be noisier. For example,
in some platforms, the system-generated timing data for pen
motion required to derive speed may not be precise enough,
or may be noisy. In this case, if the noise in the pen location
is not too noisy, one can use the average based method for
generating fits from the curvature data and the scale-space
method for deriving the speed fit. This is a choice that the
user has to make based on the accuracy of the hardware used
to capture the strokes, and the computational limitations.

Combining information sources
Above, we described two feature point detection methods
but didn’t give a way of combining the results of each

7Computational complexity of the average based filtering is lin-
ear with the number of points where the scale-space approachre-
quires quadratic time if the scale index is chosen to be a function
of the stroke length.

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

0

100

200

300

400
0

200

400

600

800

0

20

40

60

80

100

120

Figure 12: The scale-space, feature-count and joint graphs
for the speed data of the stroke in Fig. 9. In this case, the
scale selected by our algorithm is 72.
method. The hybrid fit generation method described in (Sez-
gin et al. November 2001) can be used to combine the re-
sults from two methods to utilize both information sources.

Handling complex strokes
As we mentioned earlier, we would like our method to work
for strokes even if they have curved segments. In such cases,
we would like to avoid piecewise linear approximations for
the curved portions. In our framework, each curved region
behaves like a big and smooth corner. Some arbitrary point
on the curve (which happens to be the local extreme at the
scale selected by our algorithm) gets recognized as a corner.
This makes it possible to avoid a piecewise linear approxi-
mation of the curved segments. The curve detection method
described in (Sezginet al. November 2001) can be applied
to detect the curved portions of a stroke.

Evaluation
We measured the performance of our scale-space based fea-
ture detection method on strokes from three different setups:
Two Tablet PCs (an Acer c110 and an HP tc1100), and a
Wacom digitizing LCD tablet PL-400. We chose the average
based filtering method as our baseline method and compared
our method’s performance against it.

We collected data from 10 users. For each platform, the
users were asked to draw three instances of 8 shapes. Six
of these are shown in Fig. 13, the other two are rectan-
gles rotated45o and−45o. For each user on each platform,
we counted the total number of errors (in our case either a

Figure 13: Shapes used in evaluation.

Acer c110 HP tc1100 Wacom PL-400
T 14 9 11.5

Figure 14: T values for the Wilcoxon matched-pairs signed-
ranks test for our feature point detection method and the
baseline with data collected using three different setups.

false positive or a false negative) using our feature detection
method and the baseline method. For the baseline method
we used hand-tuned parameters that gave the best possible
fitting results. For each platform, we compared the total
number of errors made by each method using the Wilcoxon
matched-pairs signed-ranks test (Siegel 1956) with the null
hypothesis that the feature detection methods have compa-
rable performance. The T values we obtained for each plat-
form is given in table 14.

Although we were unable to reject the null hypothesis for
any platform with a significance of 5% for a two tailed test,
in one case we obtained a T value of 9, very close to the
value 8 required for rejectingH0 in favor of our method with
level of significance 2.5% for a one tailed test. Overall, our
approach compared favorably to the average based filtering
method, without the need to hand-tune thresholds for deal-
ing with the noise on each platform.

Related and Future Work
Previous methods on feature point detection either rely on
preset constants and thresholds (Sezginet al. November
2001; Calhounet al. 2002), or don’t support drawing ar-
bitrary shapes (Schneider 1988; Banks & Cohen 1990).

In the pattern recognition community (Bentsson & Ek-
lundh 1992; Rattarangsi & Chin 1992; Lindeberg 1996)
apply some of the ideas from scale-space theory to sim-
ilar problems. In particular (Bentsson & Eklundh 1992;
Rattarangsi & Chin 1992) apply the scale-space idea to de-
tection of corners of planar curves and shape representation,
though they focus on shape representation at multiple scales
and don’t present a scale selection mechanism. The work

by (Lindeberg 1996) presents a way of normalizing opera-
tor responses (feature strengths) for differentσ values such
that values across scales become comparable. He presents a
scale selection mechanism which finds maxima of the data
across scales. Although this method has the merit of making
no assumptions about the data, its merit is also its weakness
because it doesn’t use observations specific to a particular
domain as we do for scale selection. It may be an interesting
exercise to implement this method and compare its perfor-
mance to our approach.

Acknowledgements
The authors would like to thank Prof. Fatin Sezgin from
Bilkent University for his contributions on the statistical
analysis of the evaluation data.

References
Babaud, J.; Witkin, A. P.; Baudin, M.; and Duda, R. O.
1986. Uniqueness of the gaussian kernel for scale-space
filtering. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence8:26–33.
Banks, M., and Cohen, E. 1990. Realtime spline curves
from interactively sketched data. InSIGGRAPH, Sympo-
sium on 3D Graphics, 99–107.
Bentsson, A., and Eklundh, J. 1992. Shape representation
by multiscale contour approximation.IEEE PAMI 13, p.
85–93, 1992.
Calhoun, C.; Stahovich, T. F.; Kurtoglu, T.; and Kara,
L. B. 2002. Recognizing multi-stroke symbols.In AAAI
2002Spring Symposium Series, Sketch Understanding.
Lindeberg, T. 1996. Edge detection and ridge detection
with automatic scale selection.ISRN KTH/NA/P–96/06–
SE, 1996.
Rattarangsi, A., and Chin, R. T. 1992. Scale-based de-
tection of corners of planar curves.IEEE Transactionsos
Pattern Analysis and Machine Intelligence14(4):430–339.
Rosin, R. 1996. Techniques for assessing polygonal ap-
proximations of curves.7th British Machine Vision Conf.,
Edinburgh.
Schneider, P. 1988. Phoenix: An interactive curve de-
sign system based on the automatic fitting of hand-sketched
curves. Master’s thesis, University of Washington.
Sezgin, T. M.; Stahovich, T.; and Davis, R. November
2001. Sketch based interfaces: Early processing for sketch
understanding.Proceedings of PUI-2001.
Siegel, S. 1956. Nonparametric statistics: For the behav-
ioral sciences.McGraw-Hill Book Company.
Witkin, A. 1983. Scale space filtering.Proc. Int. Joint
Conf. Artificial Intell., held at Karsruhe, West Germany,
1983, published by Morgan-Kaufmann, Palo Alto, Califor-
nia.
Yuille, A. L., and Poggio, T. A. 1986. Scaling theorems
for zero crossings.IEEE Transactions on Pattern Analysis
and Machine Intelligence8:15–25.

