
Generic and HMM based approaches to freehand sketch recognition

Tevfik Metin Sezgin MTSEZGIN@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

1. The Problem

We use sketches as a medium for expressing ideas and sav-
ing thoughts. Sketching is especially common in early de-
sign as a means of communication, documentation and as
a tool for stimulating thought. Despite the increasing avail-
ability of pen based PDAs and PCs, we still can’t inter-
act with our devices via sketching as we do with people.
As a group, we are building a generic multi-domain sketch
recognition architecture to make computers sketch literate.
This sketch recognition system will differ from existing ar-
chitectures in many aspects, including a language for de-
scribing shapes, mechanisms for learning new shapes, and
a blackboard based recognition architecture with top-down
and bottom-up recognizers. Here we describe a part of this
system that generates efficient bottom-up recognizers by
compiling object descriptions.

2. Motivation

As described in (Davis, 2002), current sketch recognition
systems require users to hand-code individual recognizers
as well as data structures for each object to be recognized.
Hand-coding individual recognizers has a number of draw-
backs: (i) writing recognizers and data structures is labor
intensive and error prone, (ii) extending or modifying ex-
isting recognizers requires knowing how they work, (iii)
because recognizers may be written by different program-
mers and may have different recognition algorithms, they
lack a unified approach to recognition, (iv) users usually
sketch parts of objects in a certain order and style, but cur-
rent systems don’t have a systemic way of exploiting this
information to improve recognition accuracy and speed.

3. Previous Work

Current sketch recognition systems generally either have
very limited recognition, sidestep recognition to avoid
problems induced by poor recognition ((Gross & Do,
1996), (Landay & Myers, 2001)), or depend heavily on
other modalities such as speech (McGee et al., 2001).

Previous work in our group has focused on sketch recog-
nition (Alvarado & Davis, 2001). One drawback of this

first approach was that adding new recognizable objects re-
quired writing new recognizers and data structures. This
approach also suffered from the problems of hand coding
mentioned above.

4. Approach

We aim to solve the problems mentioned above by auto-
matically generating recognizers from object descriptions.
Objects are described in an object description language that
includes information about components that form the ob-
ject and constraints that must be satisfied in order to have
a legal instance of an object (Hammond, 2002). Given an
object description, our system generates the Java code for
a recognizer that functions as a knowledge source in the
blackboard based architecture. This automatic code gener-
ation scheme removes the need to write a separate recog-
nizer for each object in the domain.

Our system reads object descriptions with a parser written
using javacc (Sun’s Java compiler compiler) and builds an
abstract syntax tree (AST). The AST contains information
about components, about constraints of different types, and
about declarations such as renaming statements that pro-
vide a mechanism for referring to objects with a different
name. The AST is processed to generate Java code for in-
dividual recognizers. The generated code includes a se-
ries of nested for-loops and conditional statements that cy-
cle through the strokes currently on the sketching surface,
looking for a permutation of the strokes that satisfy the con-
straints. If a particular subset of the strokes in the sketching
surface satisfies all constraints, a recognition is signalled to
the blackboard. If only a subset of the constraints is satis-
fied, the blackboard is notified about a partial recognition.

The recognition algorithm outlined above has worst-
case exponential complexity. The exponential nature of
sketch recognition task is also mentioned in (Mahoney &
Fromherz, 2002). The root cause of this exponential com-
plexity is the assumption that the strokes forming an object
can be drawn in any order and even in an interspersed fash-
ion, requiring that we be able to test all possible orders.
But this is not typical behavior: As we found out in a user
study, people sketch in a fairly predictable order (e.g., when



drawing a stick figure, head is drawn first, left arm/leg is
drawn before the right arm/leg). We also observed that peo-
ple typically finish one object before they start drawing an-
other. These key observations enable us to create a polyno-
mial time recognition algorithm by building hidden markov
models (HMMs) to model different sketching styles. Train-
ing data for the HMMs is generated by encoding the output
of the early sketch processing toolkit described in (Sezgin,
2001). We train a separate HMM for each object class. We
use these models to group strokes forming the same ob-
jects (segmentation) and find what kind of object they form
(recognition) at the same time. This recognition scheme is
more efficient than the brute force search method described
above. Some of the results obtained using this method can
be seen in Fig. 1.

Figure 1. A number of hand-sketched objects and the recognition
results (on the right). Colors indicate object class. Note that our
method can also detect different sketching styles within the same
object class.

Our system, along with the language described in (Ham-
mond, 2002), helps separate the task of describing an object
from how the task of recognizing it, and brings a unified ap-
proach to recognition. We also address the four problems

mentioned before. We have introduced a systematic way
of exploiting stroke order and drawing styles to produce
robust and fast recognition.

5. Future Work

We described two sketch recognition methods. The code
generation method exhaustively checks all possible stroke
orderings and makes no assumptions about drawing order.
On the other hand, the HMM based method utilizes users’
sketching styles and runs in polynomial time. These two
methods are complementary in that if the user sketches in
a style captured by the HMMs, the HMM based method is
ideal. If the user sketches in a style that the HMMs haven’t
been trained on before, the generated code can handle these
cases. We are working on smart ways of combining these
methods (as opposed to running them in separation one af-
ter the other), as well as improving the speed and accuracy
of these methods individually. We are also investigating
how hierarchical HMMs can be used in recognition and
segmentation.

References

Alvarado, C., & Davis, R. (2001). Resolving ambiguities
to create a natural sketch based interface. Proceedings
of IJCAI-2001.

Davis, R. (2002). Designs for the future. MIT Artificial
Intelligence Laboratory Annual Abstract.

Gross, M., & Do, E. (1996). Ambiguous intentions: a
paper-like interface for creative design. Proceedings of
UIST 96 (pp. 183–192).

Hammond, T. (2002). A domain description language for
sketch recognition. MIT Artificial Intelligence Labora-
tory Annual Abstract.

Landay, J. A., & Myers, B. A. (2001). Sketching interfaces:
Toward more human interface design. IEEE Computer,
vol. 34, no. 3, March 2001, pp. 56-64.

Mahoney, J. V., & Fromherz, M. P. (2002). Three main
concerns in sketch recognition and an approach to ad-
dressing them. 2002 AAAI SSS – Sketch Understanding.

McGee, D. R., Pavel, M., Adami, A., Wang, G., & Cohen,
P. R. (2001). A visual modality for the augmentation of
paper. Workshop on Perceptive User Interfaces.

Sezgin, T. M. (2001). Feature point detection and curve ap-
proximation for early processing of f ree-hand sketches.
Master’s thesis, Massachusetts Institute of Technology.


