
Generating Domain Specific Sketch Recognizers From Object Descriptions

Tevfik Metin Sezgin MTSEZGIN@AI.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

1. Introduction

Sketch understanding has been recognized as a vital com-
ponent in intelligent design spaces and an enabling technol-
ogy in natural human-computer interaction. Unfortunately
there is little computer support for sketching. We describe
a system that compiles domain specific knowledge about
objects in a particular domain into recognizers for those
objects, removing the need to handcode individual recog-
nizers.

2. System Description

As noted in (Davis, 2002), we are working on a generic
multi-domain sketch recognition architecture. This sketch
recognition system will differ from existing architectures in
many aspects, including a language for describing shapes,
mechanisms for learning new shapes, and a blackboard
based recognition architecture with top-down and bottom-
up recognizers. Here we describe a system, a part of the
larger architecture, that takes descriptions of domain spe-
cific objects in a format as specified in (Hammond, 2002),
and generates Java code that when compiled produces a
separate class file representing each object in the domain.
The generated code also functions as a bottom-up recog-
nizer that acts as a knowledge source in the larger black-
board based architecture. This automatic code generation
scheme removes the need to manually write a separate rec-
ognizer for each object in the domain.

2.1 Input

Fig. 1 illustrates how a typical input to our program looks
like. The object description has a Lisp-like syntax. It spec-
ifies what primitives form the object, and the constraints
that must be satisfied.

2.2 Output

Our system reads in the input file and generates a sepa-
rate class for each object described. The generated class
contains member fields corresponding to the components
forming the object. Upon successfully recognizing an ob-
ject, these fields are set to point to the actual primitives on

(define AndGate
(components

(Line input_A)
(Line input_B)
(Line output)
(Line vertical_line)
(GeneralPath arc))

(constraints
(parallel input_A input_B)
(above input_A input_B)
...)

)

Figure 1. Typical input for our system.

the sketching surface. Fragments of the output for the ob-
ject description in Fig. 1 can be seen in Fig. 2.

2.3 Code generation

The parser for reading the input files is written using javacc
(Sun’s Java compiler compiler). When an input file con-
taining object descriptions is read, an abstract syntax tree
is built. The AST has nodes for components, constraints
of different types, and several other declarations such as
renaming statements which provide a mechanism for re-
ferring to objects with a different name – similar to let in
Lisp. The AST is then processed to generate Java code
for individual recognizers. In addition to member fields
corresponding to components of the object, the generated
code includes a series of nested for loops and if statements
for cycling through available strokes in the sketching sur-
face, generating permutations of strokes and testing if any
of these permutations satisfy the constraints. If a particu-
lar subset of the strokes in the sketching surface satisfies
all the constraints, then a recognition is signalled to the
blackboard. If only a subset of the constraints are satis-
fied, a partial recognition is generated as explained in the
next section.

3. Generating Partial Recognitions

When the recognition routine can’t find a full recognition
but only a subset of the constraints are satisfied, we still
need to notify the blackboard that there are a number of
strokes that almost form a well-formed object but some
components are missing. For example, if we are recogniz-
ing squares and we only have three edges that satisfy the

public class AndGateParser {
Line horizontal_line1; // Members

public void recognizeAndGate(SpatialDatabase d,
Rectangle focus, boolean cons[]){

ArrayList input_A_instances; // Component instances
...
Object objects[]
objects = database.getObjects(focus);
// Resuming partial recognition
if (!constraint0 || !constraint1 || !constraint2) {
// Checking constraints
for (int i2 = 0; i2 < input_A_instances.size(); i2++) {

for (int i4 = 0; i4 < input_B_instances.size(); i4++) {
if (cons0 && cons1 && ... && cons8) {

// Recognized a full object
input_A = input_A_instance;

} else {
// Report partial recognition to the blackboard

}
}

}
}

}
}

Figure 2. Structure of the Java source generated by our system.

constraints of being part of a square, we notify the black-
board of this fact so that other knowledge sources (for ex-
ample the top-down knowledge sources) have this informa-
tion. We define a partial recognition as a group of strokes
that satisfy all the constraints that they participate in. A
group of strokes participate in a constraint if the constraint
refers to both strokes. For example, if a constraint declares
that strokes A and B are supposed to be parallel, they are
said to participate in this constraint. So in all partial recog-
nitions including A and B, this constraint must be satisfied.

The concept of partial recognitions can be illustrated better
as a graph problem. Imagine a graph where the components
are represented as nodes, and the constraints between com-
ponents are represented by edges. Furthermore, the edges
carry truth values: true if the constraint is satisfied, false
otherwise. Fig. 4 shows a situation for an object with five
components. Green edges are satisfied constraints, and red
edges are unsatisfied. In this setup, a partial recognition
is a subgraph where all the edges between the nodes are
compatible with each other (i.e. the constraints they partic-
ipate in are satisfied). In this case, the partial recognition
includes nodes with green borders. Simplified pseudocode
for an algorithm computing partial recognitions is in Fig. 4.
Here, the input arguments are respectively the current par-
tial recognition, list of components to be considered and
the list of components that are known to conflict with the
current partial recognition.

4. Related Work

There are existing systems that use object descriptions for
sketch recognition. Our system differs from those systems
by actually generating Java code which can be compiled
into Java binaries and executed efficiently as opposed to re-
ferring to the object description file during the sketching

ComputePR(List PR, List R, List P)
{

if (R is empty)
return PR;

choose neighbor node r from R
if (r.isCompatibleWith(PR)) {

pr = ComputePR(PR+r, R-r, P)
} else {

pr = ComputePR(PR, R-r, P+r)
}

return pr;
}

Figure 3. Simplified pseudocode for the PR algorithm.

Figure 4. The partial recognition graph.

process dynamically. In addition Java’s support for loading
classes makes regenerating and reloading class files possi-
ble in a dynamic fashion without sacrificing the advantages
of using compiled binaries. Finally, the partial recognition
representation we introduce gives us a systematic frame-
work to deal with partially drawn objects.

5. Future Work

Future directions include improving the speed and accuracy
of the generated recognizers by incorporating knowledge
about how objects are actually drawn by users. We are also
looking at ways of automatically incorporating optimiza-
tions in the generated code.

Acknowledgements

I would like to thank my thesis advisor Prof. Randall Davis
for his supervision.

References

Davis, R. (2002). Sketch understanding in design:
Overview of work at the mit ai lab. AAAI Spring Sympo-
sium: Sketch Understanding.

Hammond, T. (2002). A domain description language for
sketch recognition. Proceedings of 2002 SOW.

