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ABSTRACT
This paper describes a new sketch recognition framework for
chemical structure drawings that combines multiple levels of
rich visual features using a jointly trained conditional ran-
dom field. This joint model of appearance at different levels
of detail makes our framework less sensitive to noise and
drawing variations, improving accuracy and robustness. The
result is a recognizer that is better able to handle the wide
range of drawing styles found in messy freehand sketches.
Our system handles both graphics and text, producing a com-
plete chemical structure. It works in real time, providing
visual feedback about the recognition progress. On an ex-
isting dataset of chemical drawings our system achieved an
accuracy rate of 97.4%, an improvement over the best re-
ported results in literature. Our work presents a novel ap-
proach to corner detection that learns the features of corners
in our domain, achieving an accuracy of over 99%. In our
preliminary user study we found that the participants were
on average over twice as fast at generating diagrams using
our new system compared to using ChemDraw, a popular
CAD-based tool for chemical diagrams, even though most
of them had years of experience using ChemDraw and little
or no experience using a Tablet PC. Participants in the study
also rated our interface as both faster and easier to use than
ChemDraw.

INTRODUCTION
Sketches and diagrams are an essential means of communi-
cating information and structure in many different domains,
and can be an important part of the early design process,
helping people explore rough ideas and solutions in an in-
formal environment. Despite the ubiquity of sketches, there
is still a large gap between how people naturally interact with
diagrams and how computers understand them today.

One field where sketches and diagrams are especially widely
used is in chemistry. When chemists need to describe the
structure of a compound to a colleague, they typically do
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so by drawing a diagram (e.g., Figure 1). When they need
to convey the same structure to a computer, however, they
must re-create the diagram using programs like ChemDraw,
that still rely on a traditional point-click-and-drag style of
interaction. While such programs offer many useful features
and are used almost universally by chemists, these CAD-
based systems simply do not provide the ease of use or speed
of simply drawing on paper.

Our goal is to develop an intelligent sketch understanding
system that provides a more natural way to specify chemical
structures to a computer. To preserve the familiar experience
of drawing on paper, our interface allows users to use the
same set of standard chemical notations and symbols they
used before. However, unlike real pen and paper, sketches
created and interpreted using digital ink are recognized and
understood by our system, converting them to a format that
can be readily exported to other tasks such as structure anal-
ysis, visualization, and database/literature search.

This paper presents a new sketch recognition framework and
applies it to hand drawn chemical diagrams. It combines
multiple levels of rich visual features into a joint model us-
ing a discriminatively trained conditional random field. This
hierarchical approach to recognition allows our framework
to take advantage of information at multiple levels of detail,
making it less sensitive to noise and drawing variations and
significantly improving robustness and accuracy.

The key research contributions of this paper are:

• A symbol recognition architecture that combines vision
based features at multiple scales and levels of classifica-
tion.

• A new approach to corner detection that learns a domain-
specific model of how to segment strokes based on train-
ing data.

• A discriminatively trained graphical model that unifies the
predictions at each classification level and captures the re-
lationships between symbols.

• A new clustering based algorithm for inferring the con-
nectivity structure of sketched symbols.

• A real-time sketch recognition interface that has been eval-
uated by intended end-users and compared against the most
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text: R wedge-bondtext: R

text: O

wedge-bond

bond
hash-bond3 bonds

(single stroke)

Figure 1. An example of a chemical drawing that our system is de-
signed to recognize. The notation consists of element abbreviations
(e.g., “N”, “O”), group abbreviations (e.g., “R”), straight bonds, hash
bonds, and wedge bonds. Wedge and hash bonds show the 3-D struc-
ture of a molecule (its stereochemistry): hash bonds angle down be-
neath the plane and wedge bonds angle up.

popular existing technique for chemical diagram author-
ing.

HIERARCHICAL SKETCH RECOGNITION
Our system interprets each sketch using three levels of clas-
sification : inkpoints, segments, and candidate symbols.

InkPoints
“Inkpoints” are data points sampled at a regular spatial in-
terval from each stroke (Figure 2). The features we compute
at inkpoints are similar to the local descriptors used in com-
puter vision [3, 8], but are not located only at special interest
points.

The features computed at each inkpoint were selected to pro-
vide a rich description of the surrounding patch of ink. Moti-
vated by our previous work on sketched symbol recognition
[12], the features employed by our recognizer are primarily
based on visual appearance. This emphasis on visual prop-
erties makes our method less sensitive to stroke level differ-
ences, improving robustness and accuracy.

For each inkpoint, our method uses four sets of feature im-
ages to describe the local appearance at varying scales and
orientations. Each set contains four individual images, each
of which acts as orientation based filter (at 0, 45, 90, and 135
degrees). Each image captures only the ink that was drawn at
the specified orientation. For example, in the 0-degree fea-
ture image a bright pixel indicates that the ink at that point
is perfectly horizontal, a darker pixel indicates that the ink is
somewhat horizontal, and a black pixel means that there is
no ink or the ink is diagonal or vertical.

We designed these descriptors to be invariant to scale by nor-
malizing the size of the ink patch based on L, an estimate
of the scale of the sketch (described in the next section).
We then compute two version of each feature image, one
of which is rotated so the orientation of pen stroke is hori-
zontal, thus making the feature image invariant to rotation.
This dual representation is useful because it helps the sys-
tem model both orientation-independent symbols like bonds

L/4

0 45 90 135 0 45 90 135
Fixed Orientation Normali ed Orientation

L/4

L/2

Fixed Orientation Normalized Orientation

Figure 2. Shows the set of inkpoints (blue) that were extracted from
a chemical diagram. For the inkpoint highlighted in red, the two red
boxes show the size of the L/4 and L/2 feature regions. The figures
below show the set of feature images generated for the same inkpoint.
Note: the features images generated for segments are nearly identical
except that they span a larger region.

as well as fixed orientation symbols like element and group
abbreviations.

These ink features are rendered onto four 10x10 pixel feature
images. We perform Gaussian smoothing on each image to
improve robustness and reduce sensitivity to small distor-
tions and noise. We downsample each image by a factor of
2 to a final size of 5x5 pixels. The result is a set of 400 fea-
ture values per inkpoint (25 pixels * 4 images * 2 scales * 2
orientations).

Segment Extraction
The second level of features is computed on the set of stroke
segments extracted from the sketch (Figure 3). Segments are
generated by dividing strokes at corner points. Chemists of-
ten draw straight bonds using a single long polygonal stroke
(see Figure 1), relying on the reader to infer that they are ac-
tually drawing multiple individual bonds connected by im-
plicit carbons.1 Therefore, in our domain corners have a
special meaning because they determine the breaks between
straight bonds.

Corner detection is a well studied problem in sketch recogni-
tion. Previous approaches have explored looking at minima
in curvature and time [15], temporal patterns in the stroke
orientation [14], and alternative approximations to stroke cur-
vature [22]. These methods often use hand coded thresholds
to achieve good performance and customized heuristics to
deal with common error cases. Prior work also focus pri-
marily on finding well defined corners in isolated shapes,
where there is a clear distinction between corners, curves,
1Carbons atoms are so common in chemistry that they are typically
left out of the drawing and are assumed to be present anywhere that
two bonds connect without a intermediate atom.
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Feature Description
Cost The cost of removing the vertex,

from Equation 1.
Diagonal The diagonal length of the

stroke’s bounding box.
Ink Density The length of the stroke divided

by the diagonal length.
Max Distance The distance to the farther of its

two neighbor (pi−1 or pi+1) nor-
malized by the distance between
the two neighbors.

Min Distance The distance to the nearer of its
two neighbor normalized by the
distance between the two.

Sum Distance The sum of the distances to the
two neighbors normalized by the
distance between the two.

Table 1. List of features for corner detection.

and straight lines. However, as we see in Figure 3, corners in
real-world chemical drawings are often messy and unclear.

To deal with these challenges, we designed a novel corner
detection algorithm that learns how to segment a stroke. Rather
than forcing the developer to define thresholds and parame-
ters beforehand, we train our corner detector from labeled
sketch data. To the best of our knowledge this is the first
trainable corner detector used in sketch recognition. This al-
lows our detector to learn the specifics of what it means to
be a corner for chemical diagrams, which may be different
from what it means to be a corner in a different domain, or
in a domain-independent shape recognizer.

Instead of starting by deciding which points are corners, our
system instead repeatedly removes the point that is least likely
to be a corner. The process stops when the system decides
that all of the remaining points are likely to be corners. Specif-
ically, our algorithm repeatedly discards the point pi that in-
troduces the smallest cost when removed, with cost defined
as:

cost(pi) =
√

mse(si; pi−1, pi+1) dist(pi; pi−1, pi+1) (1)

where si is the subset of points in the original stroke be-
tween point pi−1 and point pi+1 and mse(si; pi−1, pi+1) is
the mean squared error between the set si and the line seg-
ment formed by (pi−1, pi+1). The term dist(pi; pi−1, pi+1)
is the distance between pi and the line segment formed by
(pi−1, pi+1).

Instead of using a hard threshold to determine when to stop
removing vertices, our system learns the likelihood of a ver-
tex being a corner from training data. For each vertex elim-
ination candidate pi it extracts the set of features shown in
Table 1. During classification, if the classifier decides that
pi is not a corner, it removes the vertex and continues to the
next elimination candidate. If, on the other hand, it decides

Figure 3. Examples of the result of our segment extraction algorithm
on three chemical drawings. Segment endpoints are highlighted in red.
Note that we only show corners from strokes that represent straight-
bonds.

that it is a corner, the process stops and all remaining vertices
are returned as corners.

One important feature of our approach is that in each itera-
tion the system makes its decision based on the set of corner
candidates that are still remaining, taking advantage of the
partial solution generated so far. To illustrate this point, con-
sider the case where there are two high curvature regions
next to each other. One of them is an intended corner, but
the other is just an accident due to noise (this is a common
problem for corner detectors in general). When both high-
curvature points are still in the list of candidates, neither one
will have a large cost since removing one will simply cause
the other to “pick up the slack.” However, once one of them
is eliminated, the cost of removing the remaining point be-
comes much larger. Of course in our implementation the
other features from Table 1 will factor into the decision, so
this is an illustrative but much simplified description.

At the end of the segment extraction stage the system records
the length of the longest segment L (after excluding the top
5% as outliers). This value is used in subsequent stages as a
rough estimate for the overall scale of the sketch.

Segment Features
We compute two types of features of segments. The first
type consists of the same feature images that we use for ink-
points, except in this case the image regions are centered at
the midpoint of the segment and the width and height of the
regions are set to L for the first scale and 2L for the second
scale. The number of pixels in the feature images is the same
as before, producing the same set of 400 feature values. We
add to this the set of geometric properties listed in Table 3 as
features.

Symbols
Symbols are the final unit of classification in our hierar-
chy. We define a symbol as a group of one or more seg-
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Feature Description
Length∗ The length of the segment.
Ink Density The length of the stroke region

matching the segment divided by
the length of the segment.

Segment Count The total number of segments
extracted from the parent stroke

Stroke Diagonal∗ The diagonal length of the parent
stroke’s bounding box

Stroke Ink Density The length of the parent stroke
divided by the diagonal length of
the parent stroke’s bounding box

Table 2. List of geometric features for segment classification. (∗) means
we include two version of this feature, one normalized by L and the
other unnormalized.

Feature Description
Stroke Count The number of strokes in the

candidate (discrete valued fea-
ture, ceiling=10).

Segment Count The number of segments in the
candidate (discrete valued fea-
ture, ceiling=10).

Diagonal∗ The diagonal length of the can-
didate’s bounding box

Ink Density The cumulative length of the
strokes in the candidate divided
by the diagonal length of the
candidate.

Table 3. List of geometric features for candidate classification. (∗)
means we include two version of this feature, one normalized by L and
the other unnormalized.

ments that represents a complete entity in the domain (e.g.,
bonds, element abbreviation, etc.). Our algorithm searches
for candidate symbols (henceforth referred to as candidates)
among groups of temporally or spatially contiguous strokes.
It forms the set of temporally candidates by considering all
possible sequences of up to n = 8 consecutively drawn
strokes, evaluating how well each sequence matches the sym-
bols in the domain. It forms the set of spatial candidates
by combining groups of strokes that are close to each other.
This process starts with all possible groups of size 2 (each
stroke and its nearest neighbor) and successively expands
each group by including the next nearest stroke (e.g., each
stroke and its 2 nearest neighbors, then its 3 nearest neigh-
bors, etc). This expansion ends when either the size of the
group exceeds a spatial constraint or when the group con-
tains more than 4 strokes. Note that this spatial grouping
algorithm allows temporal gaps in each candidate, so sym-
bols do not need to be drawn with consecutive strokes. An
illustration of this process is shown in Figure 4.

The features we use for candidates encode the visual appear-
ance of the candidate, based on our previous work in [13].
For each symbol we generate a set of five 20x20 feature im-
ages, four orientation filters and one “endpoint” image that
captures the location of stroke endpoints. These feature im-

1

2

1

1

0 45 90 135

2

end

Figure 4. Shows the set of candidates extracted from a chemical dia-
gram. The figures below show the feature images generated for the two
candidates highlighted in red.

ages are computed only on stroke segments that belong to the
candidate, unlike features in the other levels, which include
all the ink in a local patch. In order to improve robustness
to differences in aspect ratio, we stretch each symbol image
so that it has the same standard deviation of ink in both the
x and y axes. As before, we smooth and downsample each
image by a factor of 2. An example of these feature images
is shown in Figure 4. Notice that the “S” is stretched hori-
zontally in the feature image so that the standard deviation
of the ink in the x-axis is the same as that in the y-axis.

In addition to these five symbol feature images, we include
another set of four images that characterize the ink in a patch
around the candidate. These are identical to those used for
segments, and here they are centered at the center of the can-
didate and have a region size of L. We also include the set
of geometric properties listed in Table 3 as features.

Feature Image Templates
In the sections above we described how the system gener-
ates sets of feature images for each classification entity (i.e.,
inkpoints, segments, and candidates). However, we do not
use the image values directly as features for classification.
Instead, we compare the images against a set of stored tem-
plates taken from the training data and record the match dis-
tances to the nearest template neighbor in each class (we
use the L2 distance). Next, we convert these distances into
match scores (score = 1.0 - distance) and use as features both
the label of the nearest neighbor and the best match distances
to each class. For example, a segment whose nearest neigh-
bor is a straight-bond might have the following features:
(nearest=“bond”, bond=.1, wedge=.7, N=.3, O=.4, etc.).

As an optimization to improve running speed and reduce
memory usage, we use Principal Component Analysis to re-
duce the dimensionality of the combined images for each en-
tity to 256. For example, we would compress the 400 image
values extracted from an inkpoint to a set of 256 principal
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Candidates: yc,1 yc,2 yc,3

Segments: ys,1 ys,2 ys,3

yp,1 yp,2 yp,3 yp,4Ink points: yp,5

Figure 5. An illustration of our Conditional Random Field model. Cir-
cles represent label nodes (y), edges represent relationships, and dark
boxes represent evidence nodes (x) that connect the labels to its corre-
sponding features.

components. During the template matching process we cal-
culate distances based on these principal components rather
than the original image values.

JOINT GRAPHICAL MODEL CLASSIFIER
We propose a new model for sketch recognition based on
Conditional Random Fields (CRF) that combines the fea-
tures from the three levels in the classification hierarchy. A
CRF can be seen as a probabilistic framework for capturing
the statistical dependencies between the different entities we
wish to model (i.e., the set of inkpoints, segments, and can-
didates).

An alternative way to accomplish this is by training an in-
dependent classifier at each level, then using some type of
voting scheme to combine the predictions from each level.
But this simple approach has two major disadvantages. First,
by treating each layer independently it ignores any joint de-
pendencies between features at different levels. Second, it
requires the designer to specify a weighting scheme for each
layer (e.g., deciding that the predictions in the candidate
symbol layer should be worth 2x those in the inkpoint layer),
something that could be very difficult to do.

Figure 5 shows an illustration of our CRF graph structure.
The nodes in the bottom row represent labels for inkpoints
(Vp), nodes in the middle row represent labels for segments
(Vs). Inkpoint and segment nodes each have four possi-
ble labels: bond, hash, wedge, and text. The “text” label
temporarily condenses the specific letters and abbreviations
(e.g., “H”, “O”, “R”) into a single label. Examples of these
labels are shown in Figure 1. When classification is finished,
any candidate symbol recognized as a “text” is converted to
the letter identity of its nearest template match.

Nodes at the top level (Vc) represent candidate labels. How-
ever, rather than assign one node per candidate, we create
one for each segment and then distribute the candidate la-
bels to their corresponding segments. Essentially, assign-
ing a node to a given candidate means the system thinks the
node’s segment is part of that symbol. For example, assume

vi

vij

vi

f1=angle(vi , vj)

vj vj

vi

vi

vij

f2=angle(vi , vij) f3=abs(|vi| - |vj|)

vj

vj

ij

f2 angle(vi , vij) f3 abs(|vi| |vj|)

Figure 6. Spatial relationships: The three geometric features used in
the pairwise context potential.

there are 2 candidates that contain segment 2: c2 containing
only segment 2 and c1,2 containing segments 1 and 2. Under
this framework, node yc,2 will have 4 possible labels: c2-
bond, c1,2-hash, c1,2-wedge, and c1,2-text (we assume that
single segment candidates can only be straight bonds).

Our CRF model encodes the following four types of rela-
tionships:

Entity features to label mapping: This relationship de-
termines the mapping between an entity’s features and its
label (e.g., straight-bond, text, etc). This is equivalent to a
local classifier that classifies each entity independently of
the others.
Each local potential function φ represents the entity fea-
tures to label mapping, where xi is the set of features for
entity i and yi is the label.

φp(yi,xi; θ) =
∑
l

fp,l(yi,xi)θp,l (2)

Here f is a feature function defining the set of features
for the given entity (e.g., the 256-valued PCA vector for
inkpoints). There are three versions of this relationship:
φp (shown above) for inkpoints, φs for segments, and φc
for candidates (the same is true for f , x, and θ). Note that
φ is linear to the parameters θ, making the joint model in
Equation 6 (below) log-linear.
In the case of candidate nodes, the feature function ex-
tracts features from the candidate corresponding to label
yi. For instance, if yci = c1,2-wedge, then the features for
the potential function would be those from candidate c1,2.

Cross-level label consistency: This is a pairwise constraint
specifying that predictions at each level be consistent pre-
dictions at other levels (e.g., an inkpoint, its parent seg-
ment, and its parent candidate all need to have the same
label).

ψ(yi, yj) =

{
0, if yi = yj
−inf, otherwise (3)
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Candidate to candidate overlap consistency: This is a
pairwise constraint that prevents the system from choos-
ing conflicting interpretations for a single sketch region.
For example, if the system predicts that segment 1 be-
longs to c1,2,3, segments 2 and 3 also need to be assigned
to c1,2,3.

ψc(yi, yj) =

{
0, if yi = yj or

yi does not overlap yj
−inf, otherwise

(4)

Segment to segment spatial context: This pairwise rela-
tionship captures the contextual relations between pairs
of segments and their respective labels. This relation en-
ables our system to classify each segment jointly with its
context, allowing neighboring interpretations to influence
each other. Since segment predictions are tied to inkpoints
and candidates, this joint classification propagates to the
other two levels in the hierarchy.

ψs(yi, yj ,xi,xj ; θ) =
∑
l

fss,l(yi, yj ,xi,xj)θss,l (5)

Here the feature function fss,l contains the 3 spatial relation-
ships shown in Figure 6. The system discretizes f1 and f2
into bins of size π/8 and f3 into bins of size L/4.

The joint probability function over the entire graph is given
by:

logP (y|x, θ) =
∑
i∈Vp

φp(yi,xi; θ) +
∑

i,j∈Eps

ψ(yi, yj)

+
∑
i∈Vs

φs(yi,xi; θ) +
∑

si,cj∈Esc

ψ(yi, yj)

+
∑
i∈Vc

φc(yi,xi; θ) +
∑

ci,cj∈Ecc

ψc(yi, yj)

+
∑

i,j∈Ess

ψs(yi, yj ,xi,xj ; θ)− log(Z) (6)

where Eps is the set of label consistency edges from ink-
points to segments, Esc is the set of label consistency edges
from segments to symbols, Ecc is the set of overlap consis-
tency edges from candidates to candidates, andEss is the set
of spatial context edges from segments to segments. Z is a
normalization constant.

Inference and Parameter Estimation
During training the system estimates the parameters θ in a
maximum likelihood framework. The goal is to find θ∗ =
argmaxL(θ), where, following the previous literature on CRF’s
[7], we define:

L(θ) = logP (y|x, θ)− 1

2σ2
||θ||2 (7)

Here the second term is a regularization constraint on the
norm of θ to help avoid overfitting. In our experiments we
use a value of σ = 10.

We optimize L(θ) with a gradient ascent algorithm, calcu-
lating the gradient for each parameter δ

δθi
L(θ). This process

requires us to compute the marginals P (y|xi, θ). Loops in
the graph make exact inference intractable ; in response we
calculate these marginals using Belief Propagation [23], an
approximate inference algorithm. We employ a randomized
message passing schedule and run the Max-Sum algorithm
for up to 100 iterations.

For gradient-ascent algorithm we use L-BFGS ([9]), which
has been applied successfully to other CRF problems in the
past [17]. We use the same belief propagation algorithm dur-
ing inference.

Real-Time Recognition
In our evaluations it takes about 1 second to classify a sketch
on a 3.2ghz processor running in a single thread. While this
is likely sufficient for real time recognition, we also took
steps to make sure that our system is fast enough to run
on slower Tablet PC’s. First we implemented an incremen-
tal recognition model that updates the interpretation only
of strokes and segments that have been modified or added
since the last pass. Second, we made the most time con-
suming step of the process, generating features and template
matches, parallel so that we could take advantage of multi-
core CPUs. In our user study the system, a 1.8ghz Tablet
PC, was able to easily keep up with the user’s drawings.

STRUCTURE GENERATION
After choosing the final set of predicted symbols, our system
produces a connectivity pattern between the different sym-
bols, to form a complete structure. An example is shown in
Figure 7. The process of connecting symbols is based on a
set of three pairwise distance metrics:

• Bond-element distance: The distance between a bond and
an element is the distance from the bond endpoint to the
nearest point in the element symbol. We impose an addi-
tional penalty if the bond does not point towards the ele-
ment.

• Element-element distance: The distance between two let-
ter symbols is defined as the minimum distance between
the two at their closest point.

• Bond-bond distance: The distance between two bonds is
defined as the distance between their respective endpoints.
We impose a penalty if the bonds do not point towards
each other (e.g., if one bond is pointed to the midpoint
of the other) or if they are nearly parallel (parallel double
bonds are technically connected to each other, but we are
more interested in determining the two elements joined at
their endpoints).
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Figure 7. An illustration of the structure interpretation process: (left)
an interpreted sketch with detected symbols highlighted and (right) the
generated structure exported and rendered in ChemDraw.

We use an agglomerative clustering algorithm to generate
the set of symbol connections. This algorithm iteratively
merges the two nearest symbols or symbol clusters, using the
maximum distance between the two groups of entities as the
clustering metric (i.e., complete-link). We empirically set
the threshold to stop clustering at 0.4L. Since all symbols
should be connected to at least one other symbol, the sys-
tem reduces the distance metric by a factor of two if there
are only two symbols in the cluster. This encourages it to
connect isolated symbols first, effectively lowering the clus-
tering threshold.

OFF-LINE EVALUATION
We recruited 10 participants who were familiar with organic
chemistry and asked each of them to draw 12 real world or-
ganic compounds (e.g., Aspirin, Penicillin, Sildenafil, etc)
on a Tablet PC. We performed a set of user-independent per-
formance evaluations, testing our system on one user while
using the examples from the other 9 as training data. By
leaving out sketches from the same participant, this evalua-
tion demonstrates how well our system would perform on a
new user.

Because one goal of our research is to build a system that
can handle the range of drawings styles found in natural,
real world diagrams, the program used to collect these draw-
ings behaved simply like a piece of paper, i.e., capturing the
sketch but providing no recognition or feedback. This en-
sured that the system did not inadvertently provide guidance
in how to draw.

Corner Detection
Our trainable corner detector was able to find corners in
bond strokes 99.91% of the time, with a precision of 99.85%
(these measurements include bond endpoints and single bond
strokes) . In comparison, we tested a simpler version of the
detector that uses a fixed threshold2 on the cost metric from
Equation 1. The results are shown in Table 4.

Symbol Detection
The results in Table 5 show that our system was able to
accurately detect and classify 97.4% of the symbols from
the sketches in the dataset. Our result also represents an
2The threshold was chosen to produce similar values for the recall
and precision.

Method Recall Precision
Trained detector 0.9991 0.9985
Fixed threshold 0.9879 0.9904

Table 4. Evaluation of the corner detection component of our system.
We only count corners in strokes labeled as bonds and compare against
the hand labeled ground truth.

improvement on the best previously reported accuracy of
97.1%[12]. While the increase in performance seems mod-
est, it is worth noting that performance on the dataset was
already very high and may be beginning to plateau. Despite
this, our new approach was able to remove over 10% of the
remaining errors.

Method Recall Precision
ChemInk (context) .974 .956
ChemInk (no context) .969 .951
O&D 2009 [12] (context) .971 -
O&D 2009 [12] (no context) .958 -

Table 5. Evaluation of the recognition accuracy of our system. The
(no context) version does not employ spatial relationships between seg-
ments.

Note that for completeness we report precision as well as
recall. However, for this task we believe that recall (the frac-
tion of true symbols detected) is a more appropriate metric
than precision (the fraction of detections that are true sym-
bols) because, unlike in traditional object detection, there are
no overlapping detections and every stroke is assigned to a
symbol. Thus, a false positive always causes a false nega-
tive. Second, precision can be a less reliable metric because
similar mistakes are not always counted equally. Misclassi-
fying a 3-segment “H” as straight bonds, for instance, gener-
ates 3 false positives, while misclassifying it as a hash bond
generates only one.

REAL-TIME COMPARATIVE EVALUATION
We conducted a second user study to evaluate the usability
and speed of our system, asking a number of chemistry grad-
uate students to draw a set of five pre-selected diagrams on
a Tablet PC. While they were drawing, our recognition en-
gine was running in real time and constantly providing feed-
back about the recognition progress by highlighting symbols
detected so far. Users were asked to correct any errors the
system made by simply erasing and redrawing the troubled
region. Some of the collected diagrams are shown in Figure
10.

We compared our system to an existing popular chemistry
authoring tool called ChemDraw, asking users to produce the
same diagrams using its traditional mouse-and-keyboard in-
terface. We recorded each session and measured the amount
of time taken to construct the diagrams using both interfaces.
We also asked the users for their opinions about how fast and
easy it was to use each program.

Note: this study was conducted using an earlier version of
our recognition engine, combining parts of our work in [12].
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Demographics
We had a total of 9 participants, all with prior experience
with chemistry, gained either through coursework only (1
user) or research only (1 user) or both (7 users). All of
them had experience drawing chemical compounds on pa-
per, reporting an average of 5.9 out of 7 (1=novice, 7=ex-
pert). Most also had extensive prior experience using Chem-
Draw, rating themselves on average a 5.0 out of 7. Con-
versely, most had little or no prior experience using Tablet
PC’s, rating themselves an average of 2.2 out of 7.

Quantitative Analysis
Figure 8 shows the average time that the users took to com-
plete a diagram using both ChemInk and ChemDraw. It
shows that they were on average more than twice as fast us-
ing our ChemInk interface, averaging 36 seconds per sketch,
compared to ChemDraws average of 79 seconds. The dif-
ference in sketching time between the two interfaces is sta-
tistically significant (paired one-sided t-Test, p < .05). This
was a surprising finding for us since many of the participants
mentioned that they had years of experience using Chem-
Draw and use it daily in their research. This finding would
also likely surprise those users who did not rate ChemInk
as being significantly faster in the subsequent survey (Figure
9).

As Figure 8 shows, User 6 had an especially difficult time us-
ing ChemDraw, taking on average over 2 minutes per sketch.
To make sure that the outlier was not biasing our results we
repeated the analysis with User 6 omitted. The average time
spent per sketch becomes 35 seconds for ChemInk and 61
seconds for ChemDraw, showing that our interface is still
nearly twice as fast, and the difference is still statistically
significant (p < .05).

Not surprisingly, the two users who had the lowest prior ex-
perience using ChemDraw (both rated themselves 1 out of 7)
were also the slowest ChemDraw users (#6 and #8) and there
was a highly negative correlation between reported Chem-
Draw experience and time spent per sketch (corr = -0.738,
p < .05). This suggests that prior experience and training is
very important in using ChemDraw proficiently. In contrast,
all of the users were able to use ChemInk effectively regard-
less of prior experience with Tablets PC’s (corr = 0.111, p >
.05).

Qualitative Analysis
On average users rated ChemInk as being faster (6.2 vs. 4.4)
and easier to use (6.2 vs. 2.2) than ChemDraw (both differ-
ences are statistically significant). In their comments about
our system most of the users were very satisfied with the
speed and performance, in many cases comparing it favor-
ably against the traditional ChemDraw program. Some of
the comments were: “Awesome!”, “The program was very
good at recognizing my drawing even though I have fairly
messy handwriting...”, and “In classroom setting, ChemDraw
is too slow, whereas this is almost as fast as paper for taking
notes.”

Some also had suggestions for making it faster: “It would
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Figure 8. The average time taken by each of the study participants to
draw a chemical diagram using ChemInk and ChemDraw.
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Figure 9. The ratings given by the study participants on how fast and
how easy it was to use ChemInk and ChemDraw.

be even faster if you have predrawn sections that you could
insert...” and ”...if other letters or abbreviations were recog-
nized, it would be even faster (for example recognizing that
ph = [phenyl group])”.

One user made the interesting comment that there is some-
thing fundamentally different about sketching vs. typing: “I
like drawing structures by hand rather than in ChemDraw.
Just like w/ typing hand-written notes are easier to remem-
ber / visualize / understand. Ability to sketch in 3D is very
important too. great work guys! :)”

RELATED WORK
One popular approach to sketch recognition focuses on the
relationships between geometric primitives like lines, arcs,
and curves, specifying them either manually [1, 4, 5] or
learning them from labeled data [16]. Recognition is then
posed as a constraint satisfaction problem, as in [4, 5], or
as an inference problem on a graphical model, as in [1, 16,
18, 20]. Szummer [20] proposed using a CRF to classify
segments in a diagram, modeling the spatial relationships
between neighboring segments. Their work is very different
from ours in that recognition and feature extraction was only
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(a) (b) (c)

(d) (e)

Figure 10. Examples of sketches collected from the real-time user study. The system’s interpretation is highlighted as: boxed = text, light blue =
wedge bond, green = hash bond, boxes = bond endpoints, blue = straight bond.

done at the segment level and there were only two possible
labels.

Another group of related work focuses on the visual ap-
pearance of shapes and symbols. These include parts-based
methods [10, 19], which learn a set of discriminative parts
or patches for each symbol class, and template-based meth-
ods [6, 13], which compare the input symbol to a library
of learned prototypes. The main advantage of vision-based
approaches is their robustness to many of the drawing varia-
tions commonly found in real-world sketches, including ar-
tifacts like over-tracing and pen drag. However, these meth-
ods do not model the spatial relationships between neighbor-
ing shapes, relying solely on local appearance to classify a
symbol.

There have also been efforts to recognize chemical sketches
and diagrams. Tenneson and Becker [21] developed a sketch-
based system that helps students visualize the three dimen-
sional structure of an organic molecule. Unlike our system,
theirs avoids many of the challenges in symbol detection by
requiring that all symbols be drawn using a single stroke.

It also does not handle implicit structure such as omitted
carbon and hydrogen atoms. Casey et al. [2] developed a
system for extracting chemical graphics from scanned docu-
ments, but that work focused on printed chemical diagrams
rather than freehand drawings. Also, unlike our system their
approach did not handle non-planar chemical notations such
as wedge and hash bonds.

The work closest to this paper is our previous research on
chemistry sketch recognition [11] and multi-domain symbol
detection [12]. The work in this paper delivers better recog-
nition performance and presents a new principled approach
to combining multiple feature representations using a jointly
trained CRF model. It also introduces a new learning based
approach to corner detection that achieves nearly perfect re-
sults in our evaluation.

CONCLUSIONS
This paper introduced a new sketch recognition architecture
for hand drawn chemical diagrams. It combines a rich visual
description of the sketch at multiple levels with a joint clas-
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sification model that captures the relationships between the
features at each level. In our evaluation our system was able
to correctly recognize 97.4% of the symbols in our dataset,
improving on the best result previously published in litera-
ture. We also present a novel trainable corner detector that
is able to correctly identify over 99% of the time. Our eval-
uation demonstrated that our new interface is over twice as
fast as the existing method for authoring chemical diagrams,
even for novice users who had little or no experience using
a tablet.
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