
0018-9162/07/$25.00 © 2007 IEEE34 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

circle differently based on context—a circle can be a pin
joint only if it’s drawn over two bodies that are already
overlapping (in this case the car body and the wheel).

We’ve built sketch-understanding systems for a vari-
ety of domains, including the simple physics sketcher
shown in Figure 1, Unified Modeling Language diagrams
(Figure 2), analog circuits (Figure 3), and chemical struc-
ture sketches2 (Figure 4).

TERMINOLOGY AND FOCUS
Sketches differ from diagrams. By “diagrams” we

mean the more formal, at times draftsman-like figures
that CAD systems produce, while sketches are the
hand-drawn informal figures people create on paper,
whiteboards, napkins, and, more recently, tablet
computers. There is a significant body of work on
understanding diagrams such as the International
Conferences on Document Analysis and Recognition,
but the task of understanding a sketch is significantly
different.

Research on sketch understanding also differs from
the sizable body of work on handwriting understand-
ing. Sketch-understanding work proceeds largely from
an attempt to recognize the shape of the objects drawn,
using the same notion of shape that people use. Hand-
writing recognition, on the other hand, doesn’t attempt
to recognize each letter by its shape, and has success-
fully used machine-learning techniques that derive dis-
tinguishing features that might or might not correspond
to what people attend to.

Sketches are hand-drawn informal figures often created as a way of thinking about or work-

ing through a problem. Sketch-understanding systems let users interact with computers by

drawing naturally, offering a freedom not available with traditional CAD systems.

Randall Davis
Massachusetts Institute of Technology

S ketching is ubiquitous: We draw as a way of
thinking, solving problems, and communicat-
ing in a wide variety of fields, for both design
(such as sketches of conceptual designs) and
analysis (such as sketches drawn to help puzzle

through problems in physics or electronic circuits).
Unfortunately in today’s technology, sketches are

dead—they’re either graphite on slices of dead trees, or,
if captured on a PDA or tablet computer, simply pixels
of digitized ink. The Sketch Understanding Group at
MIT has been working toward a kind of “magic
paper”—that is, a surface that’s as natural and easy to
draw on as paper, yet that understands what you draw.

What does it mean for the paper to “understand”?
One example, in Figure 1, shows some of our earliest
work. We use Assist (A Shrewd Sketch Interpretation
and Simulation Tool) to sketch simple 2D physical
devices, then watch them behave.1 Assist understands
the raw sketch shown in Figure 1a in the sense that
it interprets the ink the same way we do (Figure 1b),
that is, as an inclined plane with a wheeled cart. As
Figure 1c shows, it hands this interpretation to a physics
simulator, which animates the device, giving the user the
experience of drawing on intelligent paper.

One detail helps illustrate the sense in which the sys-
tem understands the sketch in a manner similar to a
human observer. The wheels (blue circles) are attached to
the car’s body with pin joints (pink circles), yet
the user draws both the wheels and pin joints with the
same geometric shape—a circle. The system interprets a

Magic Paper: Sketch-
Understanding Research

September 2007 35

WHY SKETCH?
Given the prevalence and power of design-automation

tools, it’s reasonable to ask, why sketch when we have
tools to create far more precise and polished drawings?

Two things motivate the desire to enable sketching.

First, picking up a pen is still more natural than using a
keyboard and mouse, and free-form sketched figures seem
more intuitive than the formal shapes a CAD program
generates. There’s a freedom of thought that seems to go
with the ease of sketching, an intuition supported by evi-

Figure 1. Assist system. (a) The initial sketch, (b) the sketch as cleaned up by Assist, and (c) the simulation, showing the

consequences.

(a) (b)

(c)

Figure 2. A UML sketch recognized then turned into code using RationalRose.

//Source file:
c:\\video\\Deck.java
public class Deck extends
Hand implements Dealable
{

public Card theCard;
public Game theGame;
/**
* @roseuid 3C21348C0257
*/
public Deck()
{
}

}

36 Computer

dence from cognitive science research, which showed that
designers who sketched produced more design alterna-
tives than did those who were using a drafting tool.3

Second, and perhaps more important, CAD systems
typically require commitments that the sketcher might
not want to make, particularly at the early conceptual
design stage, or when sketching a rough picture for an
analysis problem. It is, for example, impossible simply
to draw a line in, say, a mechanical CAD system: Every
line has a precise dimension, angle, and so on. Yet, when
you want to dash off an idea as to how a device might
work, the need to specify precise sizes, angles, radii, and
so on gets in the way.

DIFFICULTIES WITH SKETCH INTERPRETATION
Sketch understanding seems so quick and intuitive

when we do it that we may wonder why creating soft-

ware to do the same thing is so difficult. One way to see
the difficulties in the task is to view the problem as one
of signal interpretation (interpreting a time-stamped
sequence of points). Many of the standard signal inter-
pretation issues arise, along with some novel ones.

Sketch interpretation in general is difficult in direct
proportion to the user’s allowed degree of freedom—
the less constrained the drawing style, the more difficult
the interpretation task. At one end of the spectrum lie
techniques such as Graffiti, which prescribes a specific
set of gestures to be drawn in a specified manner. In these
circumstances, recognition is considerably easier, and
the computational demand relatively modest. The trade-
off is the necessity of learning and using a particular
drawing style. An intermediate position is taken by work
like that in Silk,4 which suggests doing minimal inter-
pretation of the strokes, in part because the system is

Figure 3. An analog circuit sketch recognized, then analyzed by Spice.

Figure 4. A chemical structure sketch recognized, then redrawn by ChemDraw.

September 2007 37

page. In this it’s similar to but more unrestricted than
handwritten mathematical formulas.

The signal is nonchronological in the sense that we
don’t require each object to be finished before the next
is started, so a user might add strokes to a sketch to com-
plete something started earlier. For example, as the num-
bers in Figure 5 indicate, the user drew the arrows’ shafts
in sequence, and only later added the heads.

This differs from other signal interpretation problems,
such as speech recognition. When talking you might
restate something, but you can’t go back in time and
change the sounds you made earlier. Yet in sketching,
newly added strokes can change the interpretation of
strokes made earlier.

SKETCH UNDERSTANDING
Two basic assumptions ground most work in sketch

understanding.
First, the work is done in domains where there’s a rea-

sonably well-established graphical lexicon and gram-
mar. The lexicon is the set of shapes used in a
domain—for example, the standard graphical notation
for digital circuit components. The grammar describes
interrelations among shapes, indicating, for example,
that a transistor symbol should be connected to three
other components. Many scientific and engineering
domains have such a graphical lexicon and syntax, but
this is clearly not universal. The sort of impressionistic
sketches drawn by architects early in the design process,
for example, are not describable in these terms.

Second, much like work in speech understanding,
sketch-understanding systems are built for a specific
domain. Unrestricted sketch understanding is cur-
rently out of reach, for many of the same reasons that
unrestricted speech understanding isn’t particularly
successful.

intended as a design platform, and in part to avoid inter-
fering with the creative process.

Our work lies closer to the unrestricted end of the
spectrum. We want people to be able to draw as they
would normally, without specifying the number, order,
or direction of strokes in a symbol, yet still have the sys-
tem understand. Figure 5 illustrates several difficulties
that arise from this.

First, our task is incremental. That is, we want the sys-
tem to interpret users’ strokes as they’re drawn. This lets
the system provide continuous feedback about its under-
standing of the sketch, so the user can make corrections
when a misunderstanding arises. But it also means that
interpretation must be continually revised. In Figure 5,
for example, the user has not yet drawn the line con-
necting the circle and rectangle in the upper part of the
sketch that will indicate a married couple.

In addition, as in any signal interpretation problem,
there is noise. In this case, noise arises from our inabil-
ity to draw with mechanical precision: Lines wiggle,
curves intended to be closed might have a gap or an
overlap, and so on.

Next, the drawing conventions in many domains per-
mit variations. In analog circuits, for example, you can
draw capacitors as two straight parallel lines or as a
straight line and a curved line.

Individual styles also vary, across users and even within
a sketch. In Figure 5, the user drew the three successive
rectangles in the lower part of the figure, yet drew them
in three different ways (using a single stroke, a squared
C-shape closed by a line, and two L-shaped strokes).

Another issue is the difficulty of segmentation.
Consider the arrow pointing toward the rectangle at the
bottom left in Figure 5. The arrowhead touches the rec-
tangle, but isn’t connected to the shaft. Determining
which strokes might belong together requires under-
standing the domain.

Next, difficulties arise when the user lays down exten-
sive amounts of ink, as when strokes are overtraced or
when figures are filled in—for example, the filled-in tri-
angles used in drawing some arrowheads. The problem
here is that the fundamental view of the sketch as a set of
strokes or time-stamped points breaks down. A filled-in
shape is a particularly clear example: It’s of little use to
represent the ink in the interior of the shape as a sequence
of strokes. It might have been laid down that way, but the
intent was to create a 2D area of continuous ink; the par-
ticular set or sequence of strokes used is irrelevant.
Overtracing is similar. It’s the ink’s appearance that is
intended to create the line. The numerous (possibly
zigzagging) strokes used to lay down the ink are irrele-
vant. This calls for a change of representation, from the
sketch as a sequence of strokes to an area of ink.

Finally, and perhaps most interesting, the signal is both
2D and nonchronological. It’s 2D in the obvious sense
that, unlike normal handwriting, it spreads across the

Figure 5. Snapshot of a family tree as a user is drawing it.

Squares indicate males, circles indicate females, arrows

indicate offspring, and a straight line (not yet drawn) indicates

a marriage. Numbers have been added to indicate stroke order.

Recognizing shapes
The variety of information available in online sketches

enables three distinctly different representations, with
three correspondingly different approaches to recognition:

• how the shape is defined—the set of geometric con-
straints the shape must obey to be an instance of a
particular object;

• how the shape is drawn—the sequence of strokes
used; and

• what the shape looks like—the traditional concept of
image appearance.

We’ve built recognition systems to explore each of
these representations individually and are working to
understand how to combine them.

How it’s defined. We represent a shape’s definition in
a language called Ladder.7 As Figure 7 shows, Ladder
descriptions list the basic components making up the
shape and the geometric constraints that must hold
between them. Recognizing individual shapes is then a
process of matching the strokes drawn against a set of
shape descriptions for a domain.8

The description is significant both for what it con-
strains—for example, to be an arrow the shaft must be
longer than the heads—and for what it doesn’t con-
strain—for example, it doesn’t specify the lines’ orien-
tation or length, letting the system recognize arrows of
any size and in any orientation.

How it’s drawn. When drawing the standard symbol
for an AND-gate (Figure 8a), most people start with the
vertical stroke, add the arc, then draw the connecting
wires. This sequence, along with just a few others,
accounts for most of the routinely encountered stroke
orders. This is true for a wide variety of shapes, not just
those as simple as in Figure 8.

This observation provides a foundation for recogni-
tion by observing stroke sequence, using a variation on
a hidden Markov model (HMM) called a dynamic
Bayes’ net. We train the DBN to recognize shapes based
on the sequence of primitive geometric elements such as
lines and arcs found in the strokes.9

38 Computer

Representing a sketch
At the most basic level, a sketch is a collection of time-

stamped coordinate points, grouped into individual
strokes—that is, from pen down to pen up. As with
handwriting recognition, online and offline sketching
differ. Offline sketches must be scanned and lines
located, introducing additional noise, while the raw data
of online sketches is composed of strokes whose loca-
tions and widths are known precisely.

Finding primitives
One basic task common to much sketch-recognition

research involves reinterpreting the raw data as prim-
itive shapes—lines and arcs. This low-level processing
is an interesting task by itself, given the noisiness of
the data.

One common approach to finding primitives uses the
data’s temporal character, based on the observation
that, when drawing by hand, people routinely slow
down at corners, without consciously attempting to do
so.5 This lets the system locate corners more precisely
by combining information about curvature and speed,
looking for points that combine high curvature and
low speed.

Although combining information from these two
sources helps, the problem is still difficult, due to the
fine-grained noisiness of the data (Figure 6). In
response, we have explored the use of scale-space fil-
tering to remove the noise, relying on the basic intu-
ition (common to all scale-space approaches) that the
signal and noise have different spatial frequencies.6 As
those frequencies are not generally determinable a pri-
ori, that work uses dynamic selection of the appropri-
ate scale from the data itself.

After locating the corners, we represent strokes as
piecewise linear approximations, with additional pro-
cessing merging nearly collinear segments, and using
arcs (for example, Bezier curves) where an arc is a bet-
ter fit than a line or line sequence.5

We can then use the resulting lines and arcs as the raw
material in any of the representation and recognition
approaches described next.

Figure 6. Characteristics of a drawing. (a) A hand-drawn square with corresponding graphs showing the drawing’s (b) direction, (c)

curvature, and (d) speed.

(a) (b) (c) (d)

One standard simplifying assumption in an HMM-
based approach is that each shape is completed before
the next is started. This assumption puts a tractable limit
on the number of states the HMM must have. If you can
arbitrarily intersperse shapes, the number of states
needed in the HMM increases exponentially. Although
people don’t typically intersperse shapes arbitrarily, nei-
ther do they reliably finish one object before drawing
another. When drawing the transistor in Figure 8b, for
example, people routinely draw the vertical connecting
wire strokes before the arrowhead strokes that complete
the transistor itself. We have extended the DBN
approach to learn and then deal with the sort of inter-
spersing encountered in real-world practice.9

How it looks.The long history of image-understanding
research provides various approaches to recognizing a
sketch by its appearance. Several of these techniques have
been used in sketch understanding, typically by match-
ing the user’s strokes (viewed as bitmaps) against tem-
plates, using some combination of traditional distance
metrics—for example, the Hausdorff distance, Tanimoto
coefficient, and so on.10

One difficulty with sketches is that, unlike images, we
can’t assume that the template and image are related by
an affine transform. Hand-drawn sketches of symbols
routinely exhibit variations that are nonuniform over
the symbol, making the matching task more challeng-
ing, inspiring efforts to develop variations on the tradi-
tional metrics.

Recognizing a sketch by how it looks is useful in deal-
ing with situations such as overtracing and filled-in
shapes, where the stroke-based representation breaks
down. Here we need to determine whether the ink looks
like a line, no matter what sequence or collection of
strokes produced the ink.

One recent approach inspired by work in image pro-
cessing attempts to capture local visual features, rather
than match an entire template.11 It builds on the notion
of shape contexts, measuring the ink’s placement and
orientation at various points in a shape using a small
circular bull’s-eye pattern. A collection of these patterns

forms a characterization of the entire shape, which we
can then compare to similar characterizations made for
template figures.

SKETCH-ENABLED INTERFACES
Given the ability to translate strokes into object

descriptions, we can connect sketch understanding to
various back-end programs. We produced the simula-
tion in Figure 1, for example, by sending our sketch
understander’s output to a physics simulator and having
it compute and animate the resulting behavior.

We’ve experimented with several other back-end pro-
grams as well. We have, for example, connected a UML
sketch-understanding system to RationalRose. Users
sketch a class hierarchy and RationalRose generates
class declaration code for that hierarchy. In another
application, we linked a program that understands
sketches of chemical structures to ChemDraw, which
redraws the structure neatly so we can check our inter-
pretation. We also plan to link our chemical sketch
understander to one or more databases of information
about chemical compounds. These databases contain
massive amounts of useful information, but currently
must be searched by providing one of the text-based
structural encodings (such as Smiles or the International
Chemical Identifier), which are nonintuitive, to say the

September 2007 39

Figure 7.The Ladder description of an arrow.The definition includes the shape’s basic components and their geometric

constraints.

components
Line shaft
Line head1
Line head2
constraints
longer shaft head1
equal head1 head2
coincident head1.p1 head2.p1
coincident head1.p1 shaft.p1
acuteMeet head1 shaft
acuteMeet shaft head2

Figure 8. Hand-drawn shapes. (a) A hand-sketched AND-gate.

Most people start this drawing with the vertical line, then add

the arc, and the connecting wires. (b) A hand-drawn transistor.

(a) (b)

40 Computer

least. For example, the InChI language encodes the ele-
mentary compound L-ascorbic acid as InChI=1/
C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,
7-10H,1H2/t2-,5+/m0/s1. The complexity of this
notation arises from the need to capture in linear text
information about connectivity, 3D orientation, and so
on. It will be far easier and more natural simply to draw
a molecule and use that as the query.

Linking sketch-understanding systems to back-end
applications allows us to sketch-enable those applica-
tions, expanding the modalities used to interact with
them, and consequently vastly simplifying their use.

LEARNING A NEW DOMAIN
When sketch understanding is done by matching

descriptions against strokes, creating a sketch under-
stander for a new domain can be as straightforward as
writing a new set of shape definitions—much as some
speech recognizers let users write lexicons and gram-
mars for a new domain. This is considerably easier than
writing custom code for recognizers and lets nonpro-
grammers develop sketching interfaces.

Writing shape descriptions for a new domain, how-
ever, isn’t always easy. It is challenging at times because
even some simple shapes might involve multiple lines
of text (for example, the 11 lines needed to describe
an arrow). Writing descriptions is also challenging
because shape definitions have inevitable subtleties, in
the form of constraints that are typically not obvious
until they’re violated (for example, the barbs of an
arrow need to meet the end of the shaft at an acute
angle). In practice, people find it difficult to think of
all the constraints a shape must meet, leading to defi-
nitions that are underconstrained. Other times, they
write a description while thinking of a particular
instance that isn’t general enough, leading to over-
constrained definitions.

We’ve explored a variety of techniques for learning
shape definitions by example, attempting in particular to
learn from a single example. The problem is intriguing
because going from a specific drawing to an appropri-
ately generalized description is a classic problem in
learning. The fundamental question is, what about the
specific example is essential and what is accidental?

This is a particularly challenging
question where drawings are con-
cerned because they contain so much
information. When viewed geometri-
cally, every line has a length and orien-
tation, intersection points with other
lines, numerous pairwise relations—
parallel, perpendicular, near, and far—
as well as higher arity relations, such
as between. Separating the essential
from the accidental thus means select-
ing the important properties from

numerous irrelevancies.
Consider the drawing in Figure 8a. If we’re told that

this is an example of an AND-gate, precisely which geo-
metric properties are essential to its being an AND-gate?
Does it matter that the arc is connected to both ends of
the vertical line? Does it matter that the ratio of the
lengths of the two parallel lines is 1.034? Even someone
unfamiliar with the domain would likely guess that the
answers are yes and no, respectively. But how might a
program even begin to arrive at these answers?

One useful insight comes from work by some early
20th-century psychologists, who suggested that our per-
ceptual systems are drawn toward detecting what they
termed singularities—geometric properties that are in a
sense fragile and hence unlikely to have been acciden-
tal. Figure 9 illustrates the concept: Most people would
describe the first line in Figure 9a as slanted—and the
next line as vertical—its verticality jumps out at us. The
verticality property is “fragile” in the sense that the
slanted line, if rotated slightly, is still a slanted line, while
a vertical line rotated slightly loses its verticality prop-
erty. The situation is similar for properties like hori-
zontal, parallel (Figure 9b), and perpendicular.

We’ve used this insight to select from among the profu-
sion of properties present in a sketch those relations that
people are likely to attend to, using them as a reasonable
first-pass guess at the essential properties.12 The intuition
here is that a graphical notation is more likely to be usable
if it depends on the geometric properties that our eyes and
brain tend to pick out. Hence, those properties are more
likely to be the sketch’s essential properties.

We’ve built on this work by engaging the user in a
description-refinement process, using an interesting vari-
ation on near-misses as a learning vehicle.13 Where past
work on near-misses has relied on the user to offer the
system near-miss examples, our research has shown that
the program can generate its own near misses, querying
the user about their status as examples or nonexamples
of the concept. This has the well-known advantage of
speeding learning, while having the system take on the
difficult task of determining what example would be
most informative to consider next.

We’ve also explored learning from multiple examples.
This has the familiar problem of requiring numerous

Figure 9. Line orientations. (a) A slanted and a vertical line. Rotate a slanted line

slightly and it’s still a slanted line, but rotating a vertical line changes its verticality

property. (b) Two slanted lines and two parallel lines. Rotating one of a pair of par-

allel lines can change the parallelism property.

(a) (b)

such examples, as well as the less familiar difficulty of
getting examples that explore a sufficiently wide range
of possibilities. As one trivial example, when asked to
draw examples of arrows and near-miss arrows, people
rarely think of the near-miss arrow that has its shaft
shorter than the arrowheads.

SKETCHING AND MULTIMODALITY
Watch anyone draw in a routine environment—for

example, on a whiteboard during a meeting—and you’ll
almost invariably observe that they speak and gesture
as they draw. Not infrequently, their gestures and words
are essential to making sense of the sketch, adding infor-
mation not representable in the drawing. As a conse-
quence, researchers have shown considerable interest in
the ability to use all these modalities, leading to several
efforts that have explored various modality combina-
tions, producing proof-of-concept demonstrations of
their value and plausibility.14, 15

S ketch recognition today is at a stage roughly anal-
ogous to the early years of speech recognition,
when isolated words could routinely be recognized,

but continuous speech was still a research goal. Several
sketch-understanding systems and approaches deal with
individual symbols reasonably well, even those of mod-
erate complexity, with a reasonable amount of noise,
overtracing, and so on. No correlate yet exists to speech-
recognition system grammars—in sketching, the inter-
symbol relations—that approaches the complexity
manageable in speech work, but this is one important
direction of effort and progress in the field.7

Future work also seeks to extend recognition capa-
bilities beyond line drawings to the more impressionis-
tic sketching of engineers, where the profusion of strokes
and the depiction of 3D structure present a set of diffi-
cult challenges.

Efforts at sketch understanding are in some ways an
attempt to get back to the future—we want to return to
the world where we can pick up a drawing implement
and freely sketch out an idea, inspiration, or depiction
of a problem to be solved, but at the same time, have a
sketching surface that is intelligent enough to under-
stand what’s being drawn and thus can facilitate the
design and analysis process. It’s an intriguing undertak-
ing, one with rapid current progress and the promise of
considerable payoff. ■

Acknowledgments

I’d like to acknowledge the work of numerous col-
laborators whose impressive contributions are summa-
rized briefly here, as well as the organizations that have
supported this work, including Ford Motor Co., the
MIT/Oxygen Project, Microsoft, Intel, and the Pfizer
Corporation.

References

1. C. Alvarado and R. Davis, “Resolving Ambiguities to Create
a Natural Sketch-Based Interface,” Proc. Int’l Joint Conf. Arti-
ficial Intelligence (IJCAI), AAAI Press, 2001, pp. 1365-1371.

2. T.Y. Ouyang and R. Davis, “Recognition of Hand-Drawn
Chemical Diagrams,” Proc. AAAI 2007, CD-ROM, AAAI
Press, 2007.

3. V. Goel, Sketches of Thought, MIT Press, 1995.
4. J. Landay and B. Myers, “Sketching Interfaces: Toward More

Human Interface Design,” Computer, Mar. 2001, pp. 56-64.
5. T.M. Sezgin, T. Stahovich, and R. Davis, “Sketch-Based Inter-

faces: Early Processing for Sketch Understanding,” Proc.
Workshop Perceptive User Interfaces, ACM Press, 2001, pp.
1-8.

6. T.M. Sezgin and R. Davis, “Scale Space-Based Feature Point
Detection for Digital Ink,” Proc. AAAI Fall Symp. Series 2004:
Making Pen-Based Interaction Intelligent and Natural, AAAI
Press, pp. 145-151.

7. T. Hammond and R. Davis, “Ladder: A Language to Describe
Drawing, Display, and Editing in Sketch Recognition,” Proc.
Int’l Joint Conf. Artificial Intelligence (IJCAI), AAAI Press,
2003, pp. 461-467.

8. T. Hammond and R. Davis, “Automatically Transforming
Symbolic Shape Descriptions for Use in Sketch Recognition,”
Proc. AAAI, AAAI Press, 2004, pp. 450-456.

9. T.M. Sezgin, “Sketch Interpretation Using Multiscale Sto-
chastic Models of Temporal Patterns,” PhD thesis, Dept. of
Electrical Eng., MIT, 2006.

10. L.B. Kara and T.F. Stahovich, “An Image-Based, Trainable
Symbol Recognizer for Hand-Drawn Sketches,” Computers &
Graphics, vol. 29, no. 4, 2005, pp. 501-517.

11. M. Oltmans, “Envisioning Sketch Recognition: A Local Fea-
ture-Based Approach to Recognizing Informal Sketches,” PhD
thesis, Dept. of Electrical Eng., MIT, 2007.

12. O. Veselova and R. Davis, “Perceptually Based Learning of Shape
Descriptions,” Proc AAAI, AAAI Press, 2004, pp. 482-487.

13. T. Hammond and R. Davis, “Interactive Learning of Struc-
tural Shape Descriptions from Automatically Generated Near-
Miss Examples,” Proc. Intelligent User Interfaces, ACM Press,
2006, pp. 37-40.

14. E. Kaiser et al., “Demo: A Multimodal Learning Interface for
Sketch, Speak and Point Creation of a Schedule Chart,” Proc.
Int’l Conf. Multimodal Interfaces (ICMI), ACM Press, 2004,
pp. 329-330.

15. A. Adler and R. Davis, “Speech and Sketching for Multimodal
Design,” Proc. 9th Int’l Conf. Intelligent User Interfaces,
ACM Press, 2004, pp. 214-216.

Randall Davis is a professor in the Department of Electri-
cal Engineering and Computer Science at the Massachusetts
Institute of Technology. His research interests include sketch
understanding and multimodal interaction. Davis received
a PhD in artificial intelligence from Stanford University. He
is a Founding Fellow of the Association for Artificial Intel-
ligence and served terms as both councilor and president.
Contact him at davis@csail.mit.edu.

September 2007 41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

