
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr

davis@csail.mit
Computers & Graphics 29 (2005) 518–532

www.elsevier.com/locate/cag
LADDER, a sketching language for user interface developers

Tracy Hammonda,�, Randall Davisb

aMIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 32-239, Cambridge, MA 02141, USA
bMIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 32-237, Cambridge, MA 02141, USA
Abstract

Sketch recognition systems are currently being developed for many domains, but can be time consuming to build if

they are to handle the intricacies of each domain. In order to aid sketch-based user interface developers, we have

developed tools to simplify the development of a new sketch recognition interface. We created LADDER, a language to

describe how sketched diagrams in a domain are drawn, displayed, and edited. We then automatically transform

LADDER structural descriptions into domain specific shape recognizers, editing recognizers, and shape exhibitors for

use in conjunction with a domain independent sketch recognition system, creating a sketch recognition system for that

domain. We have tested our framework by writing several domain descriptions and automatically generating a domain

specific sketch recognition system from each description.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Object recognition; Object modeling; Shape; Hierarchical scene analysis; Knowledge representation; Representation

languages; Representations; Vision and scene understanding; User-centered design
1. Introduction

As pen-based input devices have become more

common, sketch recognition systems are being devel-

oped for many hand-drawn diagrammatic domains such

as mechanical engineering [1–3], UML class diagrams

[4–7], webpage design [8], GUI design [9,10], virtual

reality [11], stick figures [12], course of action diagrams

[13], and many others. These sketch interfaces (1) allow

for more natural interaction than a traditional mouse

and palette tool [14] by allowing users to hand sketch the

diagram, (2) can automatically connect to a CAD

system preventing the designer from having to enter

the same information twice, (3) can offer real-time

design advice from CAD systems, (4) allow more

powerful editing since the shape is recognized as a
e front matter r 2005 Elsevier Ltd. All rights reserve

g.2005.05.005

ing author.

esses: hammond@csail.mit.edu (T. Hammond),

.edu (R. Davis).
whole, (5) provide diagram beautification to remove

mess and clutter, and (6) use display as a trigger to

inform the sketcher that the shapes have been correctly

recognized. However, sketch recognition systems can be

quite time consuming to build if they are to handle the

intricacies of each domain. Also we would prefer that

the builder of a sketch recognition system be an expert in

the domain rather than an expert in sketch recognition

at a signal level. Rather than build each recognition

system separately, our group has been working on a

multi-domain recognition system that can be customized

for each domain.

Using our framework, in order to build a sketch

recognition system for a new domain, a developer need

only write a domain description which describes what

the domain shapes look like, and how they should be

displayed and edited after they are recognized. Thus, the

writer of the domain description does not need to know

how to program a system to perform sketch recognition.

This domain description is then automatically translated
d.

www.elsevier.com/locate/cag

ARTICLE IN PRESS

Fig. 1. System framework.

T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 519
into shape recognizers, editing recognizers, and shape

exhibitors for use with the customizable base domain

independent recognition system creating a domain

specific sketch interface that recognizes the shapes in

the domain, displaying them and allowing them to be

edited as specified in the description. The inspiration for

such a framework stems from work in speech recogni-

tion [15,16], which has used this approach with some

success.

This paper describes LADDER, the first sketch

description language that can be used to describe how

shapes and shape groups are drawn, edited, and

displayed, and a first implemented prototype system

that proves that such a framework is possible: that we

can automatically generate a sketch interface for a

domain from only a domain description. This work also

shows that LADDER [17] is an acceptable language for

describing sketch interfaces and enables us to auto-

matically generate a sketch interface from only a
LADDER domain description. To accomplish our goal,

we have built (1) LADDER, a symbolic language to

describe how shapes are drawn, displayed, and edited in

a domain, (2) a base customizable multi-domain

recognition system, and (3) a code generator [18] that

parses a LADDER domain description and generates

Java and Jess code to be used by the base recognition

system so that it can recognize, display, and edit domain

shapes. Fig. 1 shows how all three parts of the system fit

together.
2. LADDER

LADDER allows interface designers to describe how

shapes in a domain are drawn, displayed, and edited.

LADDER descriptions primarily concern shape, but

may include other information helpful to the recognition

process, such as stroke order or stroke direction. The

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532520
specification of editing behavior allows the system to

determine when a pen gesture is intended to indicate

editing rather than a stroke. Display information

indicates what to display after strokes are recognized.

The language consists of predefined shapes, con-

straints, editing behaviors, and display methods, as well

as a syntax for specifying a domain description. The

difficulty in creating such a language is ensuring that

domain descriptions are easy to specify, and that the

descriptions provide enough detail for accurate sketch

recognition. To simplify the task of creating a domain

description, shapes can be built hierarchically, reusing

low-level shapes. Shapes can extend abstract shapes,

which describe shared shape properties, preventing the

application designer from having to redefine these

properties several times. The language has proven

powerful enough to describe shapes from several

domains. The language enables more accurate sketch

recognition by supporting both top-down and bottom-

up recognition. Descriptions of how shapes may

combine can aid in top-down recognition and can be

used to describe ‘‘chain reaction’’ editing commands.

A shape definition is structural and includes primarily

geometric information, but can include other drawing

information that may be helpful to the recognition

process, such as stroke order or stroke direction.1 We

can specify that the shaft of an arrow must be drawn

before the two lines representing the head with

(drawOrder shaft head1 head2). We can use the

same constraint to specify stroke direction; for instance

(drawOrder shaft.p2 shaft.p1) requires that the

tail of the arrow be drawn before the head.

LADDER allows the developer to specify both hard

and soft constraints. Hard constraints must be satisfied

for the shape to be recognized, but soft constraints may

not be. Soft constraints can aid recognition by specifying

relationships that usually occur. For instance, in the left

box of Fig. 1, we could have specified soft(drawOr-
der shaft head1 head2) to specify that the shaft of

the arrow is commonly drawn before the head, but the

arrow should still be recognized even if this is not

satisfied.

Before creating the language, we performed a user

study where 30 people described shapes with their

natural vocabulary and with increasing levels of

syntactical constraints in order to ensure an intuitive

vocabulary and syntax. We chose a hierarchical

symbolic shape-based language as we found it to be

more intuitive to describe shapes in this manner, making

descriptions easier to create, understand, and correct.

We also noticed that not only are shape-based geome-

trical properties more intuitive than feature-based

properties such as those used by [19,20] (since shape is
1This enables us to also describe sketching languages such as

the Graffiti language for the Palm Pilot.
the salient feature used in human recognition), but since

the features (and thus recognition) are not based on

drawing style, sketchers are able to draw as they do

naturally, with no constraints on stroke number, order,

or direction.

LADDER is the first language that not only can

define how shapes are to be recognized, but also can

define how shapes are displayed and edited. Display and

editing are important parts of a sketch interface, and are

different in each domain. The display gives the sketcher

feedback that an object was recognized and beautifica-

tion can be used to remove clutter from the diagram.

Because the objects are recognized we can define more

powerful and intuitive editing gestures, consisting of a

trigger and action, for each shape. For instance, a

developer may define that an arrow can be dragged in

rubber-band fashion from its head or tail, or she may

define that a wheel can be moved as a whole by dragging

any point within the wheel’s bounding box. Although we

do encourage standardization between different do-

mains by including some predefined editing behaviors, it

is important that we allow the developer to define her

own editing behaviors for each domain. The same

gesture, such as writing an X inside of a rectangle, may

be intended as a pen stroke in the one domain (a check

inside of a checkbox, or the letter X in a textbox), or as

an editing command (deletion of the box).
2.1. Description limitations

LADDER can be used to describe a wide variety of

shapes, but we are limited to the following class of

shapes.
�
 LADDER can only describe shapes with a fixed

graphical grammar. The shapes must be diagram-

matic or iconic such that they are drawn using

the same graphical components each time. For

instance we cannot describe abstract shapes, such as

people or cats, that would be drawn in an artistic

drawing.
�
 The shapes must be composed solely of the primitive

constraints contained in LADDER and must be

differentiable from the other shapes in the language

using only the constraints available in LADDER.
�
 Pragmatically, LADDER can only describe domains

that have few curves or where the curve details are

not important for distinguishing between different

shapes. This is because curves are inherently different

to describe in detail because of the difficulty in

specifying a curve’s control points. Future work

includes investigating more intuitive ways of describ-

ing curves.
�
 Pragmatically, LADDER can only describe shapes

that have a lot of regularity and not too much detail.

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 521
If a shape is highly irregular and complicated so that

it cannot be broken down into subshapes which can

be described, it will be cumbersome to define.

2.2. Shape definition

New shapes are defined in terms of previously defined

shapes and constraints between them. An example of

arrow definition is shown on the left-hand side of

Fig. 1. The definition of a shape contains the following

parts.
�

2

and

Th

link
A list of components specifies the elements from

which the shape is built. Note that the arrow is built

from three lines.
�
 Geometric constraints define the relationships on

those components. The arrow definition requires that

the HEAD1 and SHAFT meet at a single point and form

an acute angle in a counter-clockwise direction from

HEAD1 to SHAFT. (Angles are measured in a counter-

clockwise direction.)
�
 A set of aliases is used to simplify other elements in

the description. The HEAD and TAIL have been added

as aliases in the arrow definition to more easily

specify the editing behaviors.
�
 Editing behaviors specify the editing gestures triggers

and how the object should react to these editing

gestures. The arrow definition specifies three editing

behaviors: dragging the head, dragging the tail, and

dragging the entire arrow. Each editing behavior

consists of a trigger and an action. Each of the three

defined editing commands are triggered when the

sketcher places and holds the pen on the head, tail, or

shaft, and then begins to drag the pen. The actions

for these editing commands specify that the object

should follow the pen either in a rubber-band fashion

for the head or tail of the arrow or by translating the

entire shape.2
�
 Display methods indicate what to display when the

object is recognized. A shape or its components may

be displayed in any color in four different ways: (1)

the original strokes of the shape, (2) the cleaned-up

version of the shapes, where the best-fit primitives of

the original strokes are displayed, (3) the ideal shape,

which displays the primitive components of the shape

with the constraints solved, or (4) another custom

shape that specifies which shapes (line, circle,

rectangle, etc.) to draw and where. The arrow

definition specifies that the arrow should be displayed

in the color red, that head1 and head2 should be

drawn using CLEANEDSTROKES (a straight line in this
Rubber-banding allows sketchers to simultaneously rotate

scale an object, assuming a fixed rotation point is defined.

is action has proved useful for editing arrows and other

ing shapes.
case), and that the shaft should be drawn using the

original strokes.

The domain description is translated into shape

recognizers (from the components and constraints

sections), exhibitors (from the display section), and

editors (from the editing section) which are used in

conjunction with a customizable recognition system to

create a domain sketch interface.

2.2.1. Hierarchical shape definitions

To simplify shape definitions, shapes can be defined

hierarchically. For example, the TRIANGLEARROW in

Fig. 2 is composed of an ARROW and a LINE.

2.2.2. Abstract shape definitions

In the domain of UML class diagrams, there are four

different types of arrows: the regular arrow, an arrow

with a triangle head, an arrow with a diamond head, and

an arrow with a dashed shaft. All of these arrows have

the same editing behaviors. Rather than repeat the

editing behaviors four times, we instead create an

ABSTRACTARROW (shown in Fig. 3 which specifies the

repeated editing behaviors). The is-a section, used in

Fig. 2, specifies any class of abstract shapes that the

shape may be a part of. This is similar to the extends

property in Java. All shapes extend the abstract shape

SHAPE. Abstract shapes have no concrete shape asso-

ciated with them; they represent a class of shapes that

have similar attributes or editing behaviors. An abstract

shape is defined similarly to a regular shape, except it

has a required section instead of a components section.

Each shape that extends the abstract shape must define

each variable listed in the required section, in its

components or aliases section.

2.2.3. Shape groups

A shape group is a collection of domain shapes that

are commonly found together in the domain. Defining

shape groups provides two significant benefits. Shape

groups can be used by the recognition system to provide

top-down recognition, and ‘‘chain reaction’’ editing

behaviors can be applied to shape groups, allowing the

movement of one shape to cause the movement of

another. Below we have an example describing a shape

group consisting of a FORCE and a BODY (a mechanical

engineering term describing a physical mass). In the
Fig. 2. Description for an arrow with a triangle-shaped head.

ARTICLE IN PRESS

Fig. 3. Description for the abstract class AbstractArrow.

Fig. 4. Definition of a shape group for the force/body

relationship in mechanical engineering.

T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532522
mechanical domain, forces push bodies. Forces are

represented by arrows and objects are represented

by polygons. If a force is said to be pushing an

object, then an arrow is pointing to the polygon. The

shape group FORCEPUSHOBJECT defined in Fig. 4

states that the head of the arrow touches the body. It

also specifies that the body must be drawn before the

force. If a single shape in a sketch can be part of many

instances of a shape group, then we place the key word

shared before the component shape of the shape group

(e.g. if a body could have several forces we would place

the word shared in front of the (Body b)) to show

shared(Body b). We can also define abstract shape

groups.

2.3. Language contents

The power of the language is derived in part from

carefully chosen predefined building blocks. The lan-

guage consists of predefined shapes, constraints, editing

behaviors, and display methods.

2.3.1. Predefined shapes

The language includes the primitive shapes SHAPE,

POINT, PATH, LINE, BEZIERCURVE, CURVE, ARC, ELLIPSE,

and SPIRAL. The language also includes a library of
predefined shapes built from these primitives including

RECTANGLE, DIAMOND, etc. The language uses an

inheritance hierarchy; SHAPE is an abstract shape which

all other shapes extend. SHAPE provides a number of

components and properties for all shapes, including

boundingbox, centerpoint, width, and height. Each pre-

defined shape may have additional components and

properties; a LINE, for example, also has p1, p2 (the

endpoints), midpoint, length, angle, and slope. Compo-

nents and properties for a shape can be used hierarchi-

cally in shape descriptions. When defining a new shape

the components and properties are those defined by

SHAPE, and those defined by the components and aliases

section.

2.3.2. Predefined constraints

A number of predefined constraints are included in

the language, including perpendicular, parallel, collinear,

sameSide, oppositeSide, coincident, connected, meet,

intersect, tangent, contains, concentric, larger, near,

drawOrder, equalLength, equal, lessThan, lessThanEqual,

angle, angleDir, acute, obtuse, acuteMeet, and obtuse-

Meet. If a sketch grammar consists of only the

constraints above, the shape is rotationally invariant.

There are also predefined constraints that are valid

only in a particular orientation, including horizontal,

vertical, posSlope, negSlope, leftOf, rightOf, above,

below, sameXPos, sameYPos, aboveLeft, aboveRight,

belowLeft, belowRight, centeredBelow, centeredAbove,

centeredLeft, centeredRight, and angleL, where (angleL-

line1 degrees) specifies that the angle between a

horizontal line pointing right and line1 is degrees.

We have found that it is easier for many developers

to describe shapes in an orientation dependent fashion.

However, since the developer may still want a shape

to be recognizable in any orientation, the language

allows a developer to describe shapes in an orientation

dependent fashion and then specify that the shape is

rotatable. For this purpose, the language contains an

additional constraint: isRotatable, which implies the

shape can be found in any orientation. If isRotatable

is specified along with an orientation dependent

constraint, there must be an angleL, horizontal, or

vertical constraint specified, which serves to define the

orientation and set a relative coordinate system. For

example, the two angleMeet constraints could have been

replaced with:
(isRotatable)
(horizontal shaft)
(negSlope head1)
(posSlope head2)
(leftOf shaft.p1 shaft.p2)
(leftOf head1.p2 shaft.p2)
(leftOf head2.p2 shaft.p2),
in which case the shaft is the reference line.

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 523
2.3.3. Predefined editing behaviors, actions, and triggers

Describing editing gestures permits the recognition

system to discriminate between sketching (pen gestures

intended to leave a trail of ink) and editing gestures (pen

gestures intended to change existing ink), and permits

us to describe the desired behavior in response to a

gesture.

In order to encourage interface consistency, the

language includes a number of predefined editing

behaviors described using the actions and triggers

above. One such example is dragInside, and defines that

if you hold the pen for a brief moment inside the

bounding box of a shape and then start to drag the pen

(specified by the trigger (holdDrag Shape), the entire
shape automatically translates along with the motion of

the pen.

When defining a new editing behavior particular

to a domain, there are two things to specify: the

trigger—what signals an editing command—and

the action—what should happen when the trigger

occurs. The language has a number of predefined

triggers and actions to aid in describing editing

behaviors.

The arrow definition in Fig. 1 defines three editing

behaviors. The first editing behavior says that if you

click and hold the pen over the SHAFT of the ARROW,

when you drag the pen, the entire ARROW will translate

along with the movement of the arrow. The second

editing behavior states that if you click and hold the pen

over the HEAD of the arrow, the HEAD of the arrow will

follow the motion of the pen, but the TAIL of the arrow

will remain fixed and the entire ARROW will stretch like a

rubber-band (translating, scaling, and rotating) to

satisfy these two constraints and keep the ARROW as

one whole shape. All of the editing behaviors also

change the pen’s cursor as displayed to the sketcher, and

display moving handles to the sketcher to let the

sketcher know that she is performing an editing

command.

The possible editing actions include wait, select,

deselect, color, delete, translate, rotate, scale, resize,

rubberBand, showHandle, and setCursor. To give an

example: (rubberBand shape-or-selection
fixed-point move-point [new-point]) trans-

lates, scales, and rotates the shape-or-selection so that

the fixed-point remains in the same spot, but the move-

point translates to the new-point. If new-point is not

specified, move-point translates according to the move-

ment of the pen.

The possible triggers include click, doubleClick, hold,

holdDrag, draw, drawOver, scribbleOver, and encircle.

Possible triggers also include any action listed above, to

allow for ‘‘chain reaction’’ editing.

Shape groups allow designers to define ‘‘chain

reaction’’ editing behaviors. For instance, the designer

may want to specify that when we move a rectangle,
if there is an arrowhead inside of this rectangle, the

arrow should move with the rectangle.

2.3.4. Predefined display methods

An important part of a sketching interface is

controlling what the sketcher sees after shapes

are recognized, both of which can be used to clean

up the sketch as desired for the domain and pro-

vide feedback to the sketcher that a shape has been

recognized. The designer can specify that the ori-

ginal strokes should remain, or instead that a

cleaned version of the strokes should be displayed.

In the cleaned version, the original strokes are fit

to straight lines, clean curves, clean arcs, or a combina-

tion.

Another option is to display the ideal version

of the strokes where the constraints listed in the

definition are solved. In this case, lines that are supposed

to connect at their end points actually connect and

lines that are supposed to be parallel are actually

shown as parallel. In the ideal version of the strokes,

all of the low-level signal noise from sketching is

removed.

It may be that we do not want to show any version of

the strokes at all, but some other picture. In this case, we

can either place an image at a specified location, size,

and rotation (using the method IMAGE), or we can create

a picture built out of predefined shapes, such as circles,

lines, and rectangles.

The predefined display methods include original-

Strokes, cleanedStrokes, idealStrokes, circle, line, point,

rectangle, text, color, and image. Each method includes

color as an optional argument.

2.4. Vectors

The arrow defined in Fig. 1 contains a fixed number of

components (3). However, many shapes that we would

like to define, such as a POLYGON, POLYLINE, or

DASHEDLINE, contain a variable number of components.

A POLYLINE may contain a variable number of line

segments. A variable number of components is specified

by the key word vector and must specify the minimum

and maximum number of components. If the maximum

number can be infinite, the variable n is listed. For

instance, the POLYLINE must contain at least two

lines, and each line must be connected with the pre-

vious. The definition of a POLYGON easily follows

from the definition of the POLYLINE (both are defined

in Fig. 5).

Likewise, a DASHEDARROW is made from an ARROW,

and a DASHEDLINE (both defined in Fig. 6), which in turn

contains at least two line segments. When given a third

argument specifying a length, the constraint near states

that two points are near to each other relative to a given

length.

ARTICLE IN PRESS

Fig. 5. Shape description of a polygon.

Fig. 6. Description of a dashed line and a dashed open arrow.

Stroke 0: Line 1:0 Arc 2:0

 Stroke 1:
 Stroke 2:

Stroke 3:
 Curve 4: 0 1 2 3

 Line 5: 1
 Line 6: 2

 Line 7: 3

A: B:Interpretations Interpretations

Fig. 7. (A) An ambiguous stroke that can be a LINE or an ARC.

(B) An ambiguous stroke that can be a CURVE or a POLYLINE.

T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532524
3. Multi-domain recognition system

3.1. Recognition of primitive shapes

The base customizable recognition system contains

domain independent modules that can recognize,

exhibit, and edit all of the primitive shapes in

LADDER. These modules are noted by the shaded

boxes without their inner white domain modules on the

right side of Fig. 1.

When a stroke is drawn (and has not been identified

as an editing gesture, described below), low-level

recognition is performed on the stroke. The domain

independent modules determine if the stroke can be

classified as an ELLIPSE, LINE, CURVE, ARC, POINT,

POLYLINE or some combination using techniques by

[21]. In many cases the stroke is ambiguous and has

more than one interpretation. When this happens both

interpretations are produced and sent off to the higher

level recognizer.

We want to ensure that the domain shape recognition

system only chooses one interpretation of a single

stroke. In order to ensure that only one interpretation

is chosen, each shape has an ID, and each shape keeps a

list of its subshapes, including its strokes. At any

particular time, each subshape is allowed to belong to

only one final recognized domain shape. (A final shape is

a chosen interpretation as opposed to the myriad of

possible interpretations that are created and kept until

one is finally chosen.) To give an example, the STROKE in

Fig. 7A has two interpretations: a LINE and an ARC. The

figure specifies each shape’s ID followed by the IDs of

all of the subshapes. Note that the LINE and the ARC

share the same STROKE subpart. If a shape has a
POLYLINE interpretation, or some other combination

interpretation, the STROKE must be divided into seg-

ments. The original full STROKE then has the substrokes

added as subparts. These substrokes are then included in

any interpretation that uses the full stroke. For example

in Fig. 7B the CURVE contains all of the substrokes as

subshapes. Since the set of final shapes cannot share any

subshapes, this prevents the CURVE and the POLYLINE

from both being chosen in a final interpretation.

A limitation with this bottom-up recognition method

is that if the primitive shape recognizer does not provide

the correct interpretation of a stroke, the domain shape

recognizer will never be able to correctly recognize a

higher level shape using this stroke. In the future, it may

be advantageous to add a top-down recognition process

that re-examines lower level shapes if an item is missing

from the template, such as that done in [22].
3.2. Recognition of domain shapes

Recognition of domain shapes occurs as a series of

bottom-up opportunistic data driven triggers where the

recognized shapes in the drawing represent the facts

about the world. Domain shape recognition is per-

formed by the Jess rule-based system [23]. When a new

shape primitive shape is recognized, it is added as a fact

into the Jess rule-based system. We created several Jess

rules to perform higher level clean-up on the shapes,

such as merging lines together.

Each domain shape recognizer is actually a Jess rule

defined to recognize the shape (the translation process

creating the Jess rule is explained below). The Jess rule-

based system searches for all possible combinations of

shapes that can satisfy the rule. When choosing between

competing shapes we use Okhams razor, choosing the

shape that accounts for more of the underlying data. If

two choices are equivalent, we choose the shape created

first, assuming that a sketcher prefers his shapes to

remain constant on the screen. As the number of lower

level shapes increases, the rule-based system slows down

exponentially, since as each new stroke is drawn the

system tries to join it with every other existing stroke to

attempt to form higher level shapes. To improve

efficiency and to allow the application to continue to

react in real time, we have implemented a greedy

algorithm that removes subshapes from the rule-based

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 525
system once a final higher level shape is chosen. Our

greedy approach is limited in that in cases of higher level

ambiguity, the system may select the wrong higher level

shape.

For the same reasons as above, the higher level

recognizer also slows down if there are a large number of

unrecognized strokes on the screen since the system

continues to try to match each of the unrecognized

strokes with every new stroke. A quick fix to this is to

simply prune unrecognized strokes from the recognition

tree after some time. However, this is not ideal as the

user may decide to finish a shape after some time, and

we would like to be able to recognize this shape. Future

work will investigate ways of solving this problem in the

future.

When the shapes are more constrained, the recognizer

performs faster since the system will hold fewer partial

templates to examine later. For instance, if a line

direction is constrained, the recognizer only tries to fit

the line in one direction, and if a line is horizontal, the

recognizer only needs to try the subset of the lines that

are horizontal.

We should note that even during these extreme cases

when the higher level domain shape recognition begins

to slow down and stops reacting in real time, the rest of

the system continues to run in real time since the

drawing panel, primitive recognition and, domain shape

recognition all run in three separate threads, with the

drawing panel being given priority to ensure that the pen

markings always appear in real time.
3.3. Editing recognition

A stroke may be intended as an editing gesture rather

than a drawing gesture. If an editing gesture such as

click-and-hold or double-click occurs, the system checks

to see (1) if an editing gesture for that trigger is defined

for any shape, and (2) if the mouse is over the shape the

gesture is defined for. If so then the drawing gesture is

short-circuited and the editing gesture takes over (for

instance, the shape may then be dragged). Other

triggers, such as shape-over, may require that the

drawing gesture be completed and recognized before

the action, such as deleting the shape underneath,

occurs. For example, consider the editing gesture

(trigger (drawOver Cross Shape)) (action
(delete Shape) (delete Cross)); in this example
when a CROSS is drawn over a SHAPE, the SHAPE is

deleted (as is the CROSS).
3.4. Constraint solver

As mentioned earlier, each shape can be displayed by

its original strokes, best-fit primitives, the best-fit

primitives with all of the constraints solved (which we
will refer to as the shape’s ideal strokes), or through Java

Swing objects.

To display a shape’s ideal strokes, the system uses a

shape constraint solver which takes in a shape descrip-

tion and initial locations for all of the subshapes and

outputs the shape with all of the constraints satisfied

while moving the points as little as possible. Because the

positions of the shape’s components, its properties,

and its constraints are all interrelated, we need to

generate and solve algebraic equations demonstrat-

ing these relations. We have constructed this shape

constraint solver using optimization functions from

Mathematica.

To generate a shape we first convert each shape’s

components, properties (such as, width, height, area),

and constraints into a set of algebraic equations. These

equations are then solved to find a mathematical

solution representing a shape that satisfies the descrip-

tion.

We translate each shape, its components, and its

properties using the schema listed below. This produces

a set of equations describing the object. For example,

one equation produced is arrow.area ¼ ¼ ar-
row.width * arrow.height.
�
 Minimize: To prevent the shape from shifting too

much, we minimize the distance from the value in the

initial hand-drawn example and the final solved value

for each component.
�
 Require: To prevent the lines from collapsing to a

point, all lines must have a length greater than 10

pixels.
�
 We define the bounding box of a shape (minx, miny,

maxx, maxy), so that we can enforce area-related

constraints such as equalArea, larger, contains, as

follows:

� Define shape.minx recursively:

if (shape is line):

Require: shape.minx o shape.p1.x

Require: shape.minx o shape.p2.x

else for each component:

Require: shape.minxoshape.component.minx

� Define shape.miny, shape.maxx, shape.maxy

similarly

� Minimize: shape.maxx

� Minimize: shape.maxy

� Minimize: �1 * shape.minx

� Minimize: �1 * shape.miny
�
 Require: shape.width ¼ ¼ shape.maxx - shape.

minx
�
 Require: shape.height ¼ ¼ shape.maxy - shape.

miny
�
 Require: shape.area ¼ ¼ shape.width * shape.

height
�
 Require: shape.center.x ¼ ¼ (shape.minx + shape.

maxx)/2

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532526
�
 Require: shape.center.y ¼ ¼ (shape.miny + shape.

maxy)/2

Next we translate each constraint into a set of equations

on the variables defined above. For example:

horizontal line1 becomes line1:p1:y ¼¼ line1:p2:y
contains shape1 shape2 becomes

ðshape1:minxoshape2:minxÞ &&
ðshape1:minyoshape2:minyÞ &&
ðshape1:maxx4shape2:maxxÞ &&
ðshape1:maxy4shape2:maxyÞ

equalLength line1 line2 becomes

ðline1:p1:x � line1:p2:xÞ2 þ ðline1:p1:y�
line1:p2:yÞ2 ¼¼

ðline2:p1:x � line2:p2:xÞ2

þðline2:p1:y � line2:p2:yÞ2

not sameX shape1 shape2 becomes

ðshape1:center:x þ 20oshape2:center:xÞ
jjðshape1:center:x4shape:center:x þ 20Þ

(Because perceptually, small differences in ‘x’

values may not be detected, when constraining

the shape to have different ‘x’ values we require

the difference to be at least 20 pixels.)

Finally, we use the NMinimize function in Mathe-

matica, which finds constrained global optima, to

find a solution that satisfies all of the equations

above. We now have new positions for each of the

shape’s components which satisfy the constraints in the

description. The system will then display the beautified

shape.
4. Code generation

Domain shape recognizers, exhibitors, and editors are

automatically generated during the translation process

shown in the middle of Fig. 1. A shape definition is

composed of three parts: how to recognize the shape,

how to display the shape once it is recognized, and how

to edit the shape once it is recognized. The translation

process parses the description and generates code

specifying how to recognize shapes and editing triggers

as well as how to display the shapes once they are

recognized and what action to perform once an editing

trigger occurs.

The components and constraints sections of a shape

description are automatically translated into a Jess rule

defining how to recognize that shape. The Jess rule

created for the arrow definition listed in Fig. 1 is shown

in Fig. 9. The Jess rule created first searches for the

appropriate combination of subshapes, and then tests

the constraints between them.3 We have built our
3Our current implementation does not yet support soft

constraints.
customizable base recognition system in an effort to

keep the translation process as simple as possible.

If a shape consists of a variable number of compo-

nents such as a polyline (as opposed to an arrow which

is composed of a fixed (3) number of components), the

shape description is translated into two Jess rules, one

recognizing the base case (a polyline composed of two

lines) and the other recognizing the recursive case (a

polyline composed of a line and a polyline).

A shape exhibitor is automatically generated as a Java

paint method for the shape, which calls functions in the

base recognition system defined to work for any shape.

A shape can be displayed by one or more of the

following: its original strokes, its best-fit primitives, its

best-fit primitives with the constraints solved, a collec-

tion of Java Swing shapes, or a bitmap image. To

display the ideal strokes (the best-fit primitives with the

constraints solved), an IDEAL-PAINT method is automa-

tically generated that defines the constraints to be solved

by the shape-based constraint solver.

A shape editor is automatically generated defining

which triggers are turned on for the shape or its

subshapes. If the trigger is turned on, then the

corresponding actions are defined in an automatically

generated method. The base recognition system includes

methods to identify triggers and perform actions for

each shape, and the generated method needs only to turn

them on.
5. Evaluation

We have written LADDER domain descriptions for a

variety of domains including UML class diagrams,

mechanical engineering, finite state machines, flow-

charts, and a simplified version of the course of action

diagrams (Fig. 8). Using the system presented in this

paper, the descriptions have been automatically trans-

lated into a sketch interface which recognizes, displays,

and allows editing in real time as specified by the domain

description. These descriptions include over one hun-

dred shapes, some containing text.4 Figs. 10–12 show the

unrecognized and recognized strokes from a drawing

made in an automatically generated mechanical engi-

neering, flowchart, and finite state machine sketch

interfaces.
6. Related work

This paper discusses in more detail work from [17,18].

In particular this paper gives more details on the
4Text is also a primitive shape. Text can be entered using a

keyboard or a handwriting recognizer GUI provided in

Microsoft Tablet XP. The text appears at the last typed place.

ARTICLE IN PRESS

Fig. 8. Variety of shapes and domains described and auto-generated.

T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 527
primitive and domain shape recognizers, the handling of

ambiguous primitive shapes, and the techniques used for

beautifying shapes.

6.1. Visual or sketching languages

Shape definition languages, such as shape grammars,

have been around since the early 1970s [24]. Shape

grammars are studied widely within the field of

architecture, and many systems are continuing to be

built using shape grammars [25]. Shape grammars have,

however, been used largely for shape generation rather

than recognition, and do not provide for non-graphical

information, such as stroke order, that may be helpful in

recognition. They also lack ways for specifying shape

editing.

More recent shape definition languages have been

created for use in diagram parsing [26]. These shape

definition languages are not intended for use with an

online system and do not provide ways for specifying

how to display or edit a shape. Also, since they are not

created with sketching in mind they do not provide ways

for describing non-graphical information, such as stroke

order or direction.
Within the field of sketch recognition, there have been

other attempts to create languages for sketch recogni-

tion. Bimber describes a simple sketch language using a

BNF-grammar [27]. The language describes three-

dimensional shapes hierarchically. This language allows

a programmer to specify only shape information and

lacks the ability to specify other helpful domain

information such as stroke order or direction and

editing behavior, display, or shape interaction informa-

tion.

Mahoney uses a language to model and recognize

stick figures. The language currently is not hierarchical,

making large objects cumbersome to describe [28].

Caetano et al. use fuzzy relational grammars to describe

shape [29]. Both Mahoney and Caetano lack the ability

to describe editing, display, or shape grouping informa-

tion.

Shilman has developed a statistical language model

for ink parsing with a similar intent of facilitating

development of sketch recognizers. The language con-

sists of seven constraints: distance, delta X, delta Y,

angle, width ratio, height ratio, and overlap, and allows

you to specify concrete values using either a range or

gaussian [30]. We find it difficult to describe some shapes

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532528
using this technique as the language requires providing

quantitative discrete values about a shape’s probable

location. We feel it is more intuitive to say (contains
Fig. 9. Automatically generated Jess rule for the

Fig. 10. Auto-generated mechan
shape1 shape2), rather than having to specify two

deltaX and two deltaY constraints using discrete

constraints, each of the form deltaX (shape1.WEST
arrow definition in the left box of Fig. 1.

ical engineering interface.

ARTICLE IN PRESS

Fig. 12. Auto-generated finite state machine interface.

Fig. 11. Auto-generated flowchart interface.

T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 529
o shape2.WEST).range(0, 100)) This work also

lacks the ability to describe editing and display.

Our recognition system is based on template filling of

a shape’s structural description. These structural de-

scriptions are often represented in relational graphs. Lee

performs recognition using attribute relational graphs
[31]. Their attribute language differs from ours in that

ours is more topological or geometrical, whereas their

language is more quantitative, requiring specific details

of the shape’s position. Keating also performs recogni-

tion by matching a graph representation of a shape; the

main difference between their limited graphical language

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532530
and ours is that their language is statistical and specifies

the probable location of each subpart, whereas our

language is categorical and describes the ideal location

of the shape [32]. Calhoun also uses a semantic network

representing the shape in recognition, but as far as we

can tell the language is limited, specifying only relative

angles and the location of intersections [33].

6.2. Building recognition systems

Quill [20] is a feature-based graffiti-type domain-

independent gesture recognition system that allows

designers of a gesture recognition system to sketch the

gestures to be recognized. The system then provides

advice about how well the gestures will be recognized by

the computer and how well they will be learned and

remembered by people. The Quill framework differs

from ours in using recognizers based on features and in

focusing on the way the shape is drawn (e.g., the number

of strokes, as well as stroke, speed, curvature, order,

direction, etc.). In order for their strokes to be

recognized, sketchers of this system must sketch a

gesture in the same way as the developer who trained

the system. Our focus is on removing as many sketching

restrictions as possible, to provide a more natural

sketching medium. We want users’ sketches to be

recognized no matter how many strokes they used or

in what direction or order they were drawn. Thus,

our framework includes a symbolic language for

describing the geometry of shapes from which to base

recognition.

The Electronic Cocktail Napkin project [34] allows

users to define domain shapes by drawing them. A shape

is described by the shapes it is built out of and the

constraints between them. The Cocktail Napkin’s

language is able to describe only shape.

Jacob [35] has created a software model and language

for describing and programming fine-grained aspects of

interaction in a non-WIMP user interface, such as a

virtual environment. The language is low level, making it

difficult to define new interactions, and, in the domain of

sketching, does not provide a significant improvement in

comparison to coding the domain dependent recognition

system from scratch.

6.3. Translation

The translation process is analogous to work done on

compiler compilers, in particular, visual language

compiler compilers by Costagliola et al. [36]. A visual

language compiler compiler allows a user to specify a

grammar for a visual language, and then compiles it into

a recognizer which can indicate whether an arrangement

of icons is syntactically valid. The main difference

between Costagliola’s work and ours is that (1) ours

handles hand-drawn images and (2) their primitives are
the iconic shapes in the domain whereas our primitives

are geometric.
7. Future work

While we have attempted to make LADDER as

intuitive as possible, shape definitions can be difficult to

describe textually, and we are currently integrating

Veselova’s work to automatically generate shape de-

scriptions from a drawn example [37]. However, even

automatically generated shapes will need to be checked

and modified. Thus we are in the process of building a

graphical debugger which tests if shapes are over- or

under-constrained by generating suspected near-miss

example shapes [38].

We want to ensure that our framework and language

are robust and thus we are continuing to test our system

on more domains. For the same reason, we would like to

test our syntax on a wide user base.

We are in the process of building an API to allow the

designer to connect to a CAD system to build more

sophisticated sketch systems. We would also like to

allow users building systems in languages other than

Java to access recognition events by registering for them.
8. Contributions

We have developed an innovative framework in which

developers need to write only a LADDER domain

description, and then this description is automatically

transformed into a sketch recognition interface for that

domain. We have implemented a prototype system and

tested our framework by writing descriptions for several

domains and then automatically generating a sketch

interface for each of these domains. To accomplish our

goal, we have created (1) LADDER, the first symbolic

domain description language to describe how sketched

diagrams in a domain are drawn, displayed, and edited,

(2) a customizable base recognition system, which

performs the domain independent parts of recognition

usable for many domains, and (3) a code generator that

translates a domain description into higher level domain

specific recognition code to be used by the customizable

base recognition system.
Acknowledgements

The authors would like to thank Eric Saund, Mike

Oltmans, Jacob Eisenstein, Aaron Adler, Metin Sezgin,

Christine Alvarado, Sonya Cates, Mark Finlayson,

Raghavan Parthasarthy, Jan Hammond, Rob Miller,

James Landay, and Tom Stahovich for their feedback.

This work is supported in part by the MIT/Microsoft

iCampus initiative and in part by MIT’s Project Oxygen.

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532 531
References

[1] Alvarado C. A natural sketching environment: bringing

the computer into early stages of mechanical design.

Master’s thesis, MIT, 2000.

[2] Landay JA, Myers BA. Interactive sketching for the

early stages of user interface design. In: Proceedings of

CHI ’95: Human Factors in Computing Systems, 1995.

p. 43–50.

[3] Stahovich T. Sketchit: a sketch interpretation tool for

conceptual mechanism design. Technical Report, MIT AI

Laboratory, 1996.

[4] Hammond T, Davis R. Tahuti: a geometrical sketch

recognition system for uml class diagrams, AAAI Spring

Symposium on Sketch Understanding 2002; 59–68.

[5] Damm CH, Hansen KM, Thomsen M. Tool support for

cooperative object-oriented design: gesture based modeling

on an electronic whiteboard. In: CHI 2000, CHI; 2000.

p. 518–25.

[6] Ideogramic, Ideogramic UMLTM, Ideogramic ApS,

Denmark, http://www.ideogramic.com/products/, 2001.

[7] Lank E, Thorley JS, Chen SJ-S. An interactive system for

recognizing hand drawn UML diagrams. In: Proceedings

for CASCON 2000; 2000. p. 7.

[8] Lin J, Newman MW, Hong JI, Landay J. DENIM: finding

a tighter fit between tools and practice for web site design.

In: CHI Letters: Human Factors in Computing Systems,

CHI; 2000. p. 510–7.

[9] Caetano A, Goulart N, Fonseca M, Jorge J. JavaSketchIt:

issues in sketching the look of user interfaces, Sketch

Understanding. Papers from the 2002 AAAI Spring

Symposium.

[10] Lecolinet E. Designing guis by sketch drawing and visual

programming. In: Proceedings of the International Con-

ference on Advanced Visual Interfaces (AVI 1998), AVI,

New York: ACM Press, 1998. p. 274–6. URLciteseer.

nj.nec.com/lecolinet98designing.html

[11] Do EY-L. Vr sketchpad—create instant 3d worlds by

sketching on a transparent window. In: de Vries B, van

Leeuwen JP, Achten HH, editors. CAAD Futures 2001.

2001. p. 161–72.

[12] Mahoney JV, Fromherz MPJ. Handling ambiguity in

constraint-based recognition of stick figure sketches. SPIE

Document Recognition and Retrieval IX Conference,

San Jose, CA.

[13] Pittman J, Smith I, Cohen P, Oviatt S, Yang T. Quickset: a

multimodal interface for military simulations. Proceedings

of the Sixth Conference on Computer-Generated Forces

and Behavioral Representation, 1996. p. 217–24.

[14] Hse H, Shilman M, Newton AR, Landay J. Sketch-based

user interfaces for collaborative object-oriented modeling.

Berkley CS260 Class Project (December 1999).

[15] Zue, Glass, Conversational interfaces: advances and

challenges. Proceedings of IEEE, 2000. p. 1166–80.

[16] VoiceXML Forum, http://www.voicexml.org/specs/Voice

XML-100.pdf, Voice eXtensible Markup Language, 1st ed.

(07 March 2000).

[17] Hammond T, Davis R. LADDER: a language to describe

drawing, display, and editing in sketch recognition.

Proceedings of the 2003 International Joint Conference

on Artificial Intelligence (IJCAI).
[18] Hammond T, Davis R. Automatically transforming

symbolic shape descriptions for use in sketch recognition.

Proceedings of the 19th National Conference on Artificial

Intelligence (AAAI-04).

[19] Rubine D. Specifying gestures by example. Computer

Graphics 1991;25(4):329–37.

[20] Long AC. Quill: a gesture design tool for pen-based user

interfaces, Eecs department, computer science division,

UC Berkeley, Berkeley, CA, December 2001.

[21] Sezgin TM. Feature point detection and curve approxima-

tion for early processing in sketch recognition. Master’s

thesis, Massachusetts Institute of Technology, June 2001.

[22] Alvarado C, Davis R. Sketchread: a multi-domain sketch re-

cognition engine. In: Proceedings of UIST ’04, 2004. p. 23–32.

[23] Friedman-Hill E, Jess, the java expert system shell. http://

herzberg.ca.sandia.gov/jess, 2001.

[24] Stiny G, Gips J. Shape grammars and the generative

specification of painting and sculpture. In: Freiman CV,

editor. Information processing, vol. 71. Amsterdam:

North-Holland, 1972. p. 1460–5.

[25] Gips J. Computer implementation of shape grammars.

NSF/MIT Workshop on Shape Computation.

[26] Futrelle RP, Nikolakis N. Efficient analysis of

complex diagrams using constraint-based parsing. In:

ICDAR-95 (International Conference on Document

Analysis and Recognition), Montreal, Canada; 1995.

p. 782–90.

[27] Bimber O, Encarnacao LM, Stork A. A multi-layered

architecture for sketch-based interaction within virtual

environments. Computer and Graphics (Special Issue on

Calligraphic Interfaces: Towards a New Generation of

Interactive Systems) 2000; 24(6): 851–67.

[28] Mahoney JV, Fromherz MPJ. Three main concerns in

sketch recognition and an approach to addressing them.

In: Sketch Understanding, Papers from the 2002 AAAI

Spring Symposium. Stanford, CA: AAAI Press, 2002.

p. 105–12.

[29] Caetano A, Goulart N, Fonseca M, Jorge J. Sketching user

interfaces with visual patterns. Proceedings of the First

Ibero-American Symposium in Computer Graphics

(SIACG02), 2002. p. 271–9.

[30] Shilman M, Pasula H, Russell S, Newton R. Statistical

visual language models for ink parsing. In: Sketch Under-

standing, Papers from the 2002 AAAI Spring Symposium.

Stanford, CA: AAAI Press, 2002. p. 126–32.

[31] Lee S-W. Recognizing circuit symbols with attributed

graph matching. In: Baird H, Bunke H, Yamamoto K,

editors. Structured document image analysis, 1992.

p. 340–58.

[32] Keating JP, Mason RL. Some practical aspects of

covariance estimation. Pattern Recognition Letters 1985;

3(5):295–350.

[33] Calhoun C, Stahovich TF, Kurtoglu T, Kara LB.

Recognizing multi-stroke symbols. Sketch Understanding.

Papers from the 2002 AAAI Spring Symposium, 2002.

p. 15–23.

[34] Gross MD, Do EY-L. Demonstrating the electro-

nic cocktail napkin: a paper-like interface for early

design. ‘Common Ground’ appeared in ACM Con-

ference on Human Factors in Computing (CHI), 1996.

p. 5–6.

http://www.ideogramic.com/products/
http://www.URLciteseer.nj.nec.com/lecolinet98designing.html
http://www.URLciteseer.nj.nec.com/lecolinet98designing.html
http://www.voicexml.org/specs/VoiceXML-100.pdf
http://www.voicexml.org/specs/VoiceXML-100.pdf
http://herzberg.ca.sandia.gov/jess
http://herzberg.ca.sandia.gov/jess

ARTICLE IN PRESS
T. Hammond, R. Davis / Computers & Graphics 29 (2005) 518–532532
[35] Jacob RJK, Deligiannidis L, Morrison S. A software model

and specification language for non-WIMP ¼ user interfaces.

ACM Transactions on Computer-Human Interaction 1999;

6(1):1–46 URLciteseer.nj.nec.com/jacob99software.html.

[36] Costagliola G, Tortora G, Orefice S, Lucia D. Automatic

generation of visual programming environments. IEEE

Computer 1995; 56–65.
[37] Veselova O. Perceptually based learning of shape descrip-

tions. Master’s thesis, Massachusetts Institute of Technol-

ogy, Cambridge, MA, 2003.

[38] Hammond T, Davis R. Shady: a shape description

debugger for use in sketch recognition. AAAI Fall

Symposium on Making Pen-Based Interaction Intelligent

and Natural.

http:www.URLciteseer.nj.nec.com/jacob99software.html

	LADDER, a sketching language for user interface developers
	Introduction
	LADDER
	Description limitations
	Shape definition
	Hierarchical shape definitions
	Abstract shape definitions
	Shape groups

	Language contents
	Predefined shapes
	Predefined constraints
	Predefined editing behaviors, actions, and triggers
	Predefined display methods

	Vectors

	Multi-domain recognition system
	Recognition of primitive shapes
	Recognition of domain shapes
	Editing recognition
	Constraint solver

	Code generation
	Evaluation
	Related work
	Visual or sketching languages
	Building recognition systems
	Translation

	Future work
	Contributions
	Acknowledgements
	References

