
Automatically Transforming Symbolic Shape Descriptions for Use in Sketch
Recognition

Tracy Hammond and Randall Davis
MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)

MIT Building 32-(239,237), 32 Vassar St.
Cambridge, MA 02139

{hammond,davis} at csail.mit.edu

Abstract

Sketch recognition systems are currently being devel-
oped for many domains, but can be time consuming to
build if they are to handle the intricacies of each do-
main. This paper presents the first translator that takes
symbolic shape descriptions (written in the LADDER
sketch language) and automatically transforms them
into shape recognizers, editing recognizers, and shape
exhibitors for use in conjunction with a domain inde-
pendent sketch recognition system. This transformation
allows us to build a single domain independent recog-
nition system that can be customized for multiple do-
mains. We have tested our framework by writing sev-
eral domain descriptions and automatically created a
domain specific sketch recognition system for each do-
main.

Introduction
As pen-based input devices have become more common,
sketch recognition systems are being developed for many
domains such as mechanical engineering (Alvarado 2000),
UML class diagrams (Hammond & Davis 2002), webpage
design (Lin et al. 2000), architecture (Gross, Zimring, &
Do 1994), GUI design (Caetano et al. 2002a; Lecolinet
1998), virtual reality (Do 2001), stick figures (Mahoney &
Fromherz 2002), course of action diagrams (Pittman et al.
1996), and many others. These systems allow users to sketch
a design, which is a more naturally interaction than a tradi-
tional mouse and palette tool (Hse et al. 1999). But sketch
recognition systems can be quite time consuming to build if
they are to handle the intricacies of each domain.

We propose that rather than build a separate recognition
system for each domain, we instead build a single domain
independent recognition system that can be customized for
each domain. To build a sketch recognition system for a new
domain, the developer would need only write a domain de-
scription, describing how shapes are drawn, displayed and
edited. This description would then be transformed for use
in the domain independent system. The inspiration for such
a framework stems from work in speech recognition, which
has been using this approach with some success (Zue &
Glass 2000).

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In our work, we transform a grammar into a domain rec-
ognizer of hand-drawn shapes. This is analogous to work
done on compiler compilers, in particular visual language
compiler compilers (Costagliola et al. 1995). A visual lan-
guage compiler compiler allows a user to specify a gram-
mar for a visual language, then compiles it into a recognizer
which can indicate whether a arrangement of icons is syn-
tactically valid. The main difference between this work and
ours is that 1) ours handles hand-drawn images and 2) their
primitives are the iconic shapes in the domain whereas our
primitives are geometric.

In this paper we present the first translator that takes sym-
bolic descriptions of how shapes are drawn, displayed, and
edited in a domain and automatically transforms them into
shape recognizers, editing recognizers, and shape exhibitors
for use in a domain independent sketch recognition system.
To succeed in our goal, we have created 1) LADDER(Ham-
mond & Davis 2003), a symbolic language for describing
how shapes are drawn, displayed, and edited in a domain,
2) a translator as described above, and 3) a simple domain
independent recognition system that uses the newly trans-
lated components to recognize, display, and allow editing
of the domain shapes. The implementation of this translator
and domain independent sketch recognition system serves to
show both that such a framework is feasible and that LAD-
DER is an acceptable language for describing domain infor-
mation.

The domain independent recognition system and trans-
former described here were designed to test whether we
could in fact transform symbolic descriptions of a do-
main into active recognizers usable by a domain indepen-
dent recognition system. Other work in our group is pur-
suing a more ambitious approach to both building a do-
main independent recognition system and studying the pro-
cess of transforming descriptions into recognizers. Never-
theless, the work reported here does illustrate the plausibility
of transforming descriptions into recognizers.

We have chosen a symbolic sketching language based on
how shapes look rather than on features such as drawing
speed, size of the bounding box, etc., (as in systems like (Ru-
bine 1991; Long 2001)).We did this to ensure that symbols
would be recognized if they looked the same, even if they
weren’t drawn in the same way (e.g., with a different num-
ber of strokes), allowing users to draw the shapes as they

nira
Text Box
Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), pp.450-456.

would naturally. A high-level symbolic language based on
shape offers the added advantage in being easier to read and
understand, facilitating identification and correction of er-
rors in the description such as automatically checking if a
shape is impossibly constrained (which would be difficult
in a low-level languages such as (Jacob, Deligiannidis, &
Morrison 1999)). Shape definitions primarily concern how
shapes look, but may include other information helpful to
the recognition process, such as stroke order or stroke direc-
tion.

Because different domains have different ways of display-
ing and editing the shapes in their domain, sketch recogni-
tion systems need to know how to edit and display the shapes
recognized. This motivated us to create a language that al-
lows developers to describe editing and display, as well as
how the shapes look and are drawn.

Shape description languages have been created for use
in architecture, diagram parsing, as well as within the field
of sketch recognition itself. However, current shape de-
scription languages lack ways for describing editing (Stiny
& Gips 1972; Futrelle & Nikolakis 1995; Bimber, Encar-
nacao, & Stork 2000; Mahoney & Frommerz 2002; Cae-
tano et al. 2002b; Gross & Do 1996), display (Futrelle
& Nikolakis 1995; Bimber, Encarnacao, & Stork 2000;
Mahoney & Frommerz 2002; Caetano et al. 2002b; Gross &
Do 1996), or non-graphical information, such as stroke order
or direction (Stiny & Gips 1972; Futrelle & Nikolakis 1995;
Bimber, Encarnacao, & Stork 2000).

Framework Overview

Our goal is to make development of a sketch recognition sys-
tem easier by enabling domain experts (rather than program-
mers) to describe the shapes to be recognized. Figure 1 gives
an overview of the framework for our overall research effort:
1) a sketch description language, LADDER, 2) a translator
that converts a domain description into components for use
in conjunction with a domain independent sketch recogni-
tion system, and 3) a domain independent sketch recognition
system that uses the newly generated components to recog-
nize, edit, and display shapes in the domain. The domain de-
scription is transformed into shape recognizers, exhibitors,
and editors which are used in conjunction with a domain
independent recognition system to create a domain specific
recognition system.

To create the domain specific recognition system, the de-
veloper writes a LADDER domain description consisting of
multiple shape definitions. The left box of Figure 1 gives
an example of an Arrow shape definition. The components
and the constraints define what the shape looks like and
are transformed into shape recognizers. The display section
specifies how the shape is to be displayed when recognized
and is transformed into shape exhibitors. The editing section
specifies the editing behaviors that can be performed on the
recognized shape and are transformed into editing recogniz-
ers.1

1The aliases section renames components or sub-components
for ease of reference later.

LADDER supplies a number of predefined shapes, con-
straints, display methods, and editing behaviors. These pre-
defined elements are hand-coded into the domain indepen-
dent system, allowing it to recognize, display, and edit these
predefined shapes. Recognition is carried out as a series of
bottom up opportunistic data driven triggers in response to
pen strokes.

The third box of Figure 1 shows the domain indepen-
dent sketch recognition system, which contains hand-coded
shape recognizers, editing recognizers, and shape exhibitors
for the primitive shapes (line, ellipse, curve, arc, and point).
This system also defines each of the constraints. The trans-
lator creates additional shape recognizers (which in turn call
on the constraint functions), editing recognizers, and shape
exhibitors. As each stroke is drawn, the system determines
whether the stroke is an editing trigger for any shape. If not,
it is taken to be part of the drawing, and is recognized as a
collection of primitive shapes. The resulting primitives are
added to the database, and the recognition module examines
the database to attempt to combine the primitives into more
abstract shapes. Specialized methods merge overlapping and
connecting lines to account for primitives such as lines being
drawn using more than one stroke. The display module then
displays the result as defined by the domain description.

The domain independent recognition system, including
the set of primitive shapes, constraints, display routines, and
editing gesture handlers, and the links between them, pro-
vides a substantial foundation for the domain specific recog-
nition system, helping to greatly simplify the translation pro-
cess.

Transformation
The translation process parses the description and generates
code specifying how to recognize shapes and editing triggers
as well as how to display the shapes once they are recognized
and what action to perform once an editing trigger occurs.
We describe the translation process in detail for each part of
the shape definition.

Generating Shape Recognizers
The job of the shape parser is to transform a shape defini-
tion into rules that recognize that shape. The shape defini-
tion specifies the components that make up the shape as well
as the constraints on these components, including any re-
quirements about stroke order or direction.2 We use the Jess
(Friedman-Hill 2001) rule engine for recognition.

Jess is a forward-chaining pattern/action rule engine for
Java. In our system, Jess facts represent recognized drawn
shapes. Each stroke is segmented into a point, line, curve,

2LADDER allows the user to specify both hard and soft con-
straints. Hard constraints must be satisfied for the shape to be rec-
ognized, but soft constraints may not be. Soft constraints can aid
recognition by specifying relationships that usually occur. For in-
stance, in the left box of Figure 1, we could have specified (draw-
order shaft head1 head2) to specify that the the shaft of the arrow
is commonly drawn before the head, but the arrow should still be
recognized even if this is not satisfied. Our current implementation
does not yet support soft constraints.

Output Screen

Editing
* Primitive Actions

* Primitive Triggers

* Primitive Behaviors
* Domain Behaviors

Input Stroke

Recognition

head1.p1

shaft.p1

head.p1

head1.p2

head2.p2

a < 90

a < 90
shaft.p2

* Primitive Shapes

* Primitive Constraints

* Domain Shapes

Display

straight line

straight line

original stroke

* Primitive Exhibitors

* Domain Exhibitors

Drawn Shapes

Database

(define shape Arrow

 (comment "An arrow with an open head.")

 (components

 (Line shaft)

 (Line head1)

 (Line head2))

 (constraints

 (coincident shaft.p1 head1.p1)

 (coincident shaft.p1 head2.p1)

 (equalLength head1 head2)

 (acuteMeet head1 shaft)

 (acuteMeet shaft head2))

 (aliases

 (Point head shaft.p2)

 (Point tail shaft.p1))

 (editing

 ((trigger (holdDrag head))

 (action (rubber-band this tail head))

 ((trigger (holdDrag tail))

 (action (rubber-band this head tail))

 ((trigger (holdDrag this))

 (action (move this)))

 (display

 (original-strokes shaft)

 (cleaned-strokes head1 head2)

 (color red))

)

Domain Description

Shape Definition of Arrow

generating

shape

recognizers

generating

editing

recognizers

generating

shape

exhibitors

Sketch

Recognition

SystemTranslation

Figure 1: Framework Overview showing LADDER Domain Description, Translator, and Domain Independent Sketch Recog-
nition System.

arc, ellipse, spiral, or some combination using techniques
from (Sezgin 2001), and the primitive shapes are added to
the Jess fact database. For instance, if a line is drawn, a fact
is added of the form (Line 342 23 24 25 10.6),
where 342 indicates the line’s ID, 23, 24, and 25 are the IDs
of the endpoints and midpoint, and 10.6 indicates the length
of the line. 3 An additional fact, (Subshapes Line 342
342), is also sent to indicate the primitive shapes that make
up the drawn shape.

Our domain shape recognizers are implemented as Jess
rules. In the transformation process we create a rule whose
pattern specifies the components of the shape and the con-

3Because we do not want to place any unspecified drawing or-
der constraints, each line, arc, and curve is actually added twice
to the Jess rule based system to take into account the fact that the
endpoints may be assigned in either direction.

straints that must hold between the components.4 An ex-
ample of the rule generated for the arrow given in the left
box in Figure1 is shown in Figure 2. The translation process
is straightforward because of the foundation of primitives
built into the domain independent system. The rule engine
searches for all possible subsets of facts for the collection
specified in its premise. In the case of Figure 1, the rule en-
gine searches for three lines to make up the shaft, head1,
and head2. The rule engine then tests whether the constraints
hold for each subset. Then, for each collection of three lines
labelled shaft, head1, and head2, the Jess engine will check
that head1.p1 and shaft.p1 are coincident. Each LADDER
constraint is defined as a Jess function to simplify transfor-

4The pattern also specifies that all components be distinct, to
prevent the rule engine from returning three copies of the same line
when trying to find an arrow.

(defrule ArrowCheck
;; get three lines
?f0 $<$- (Subshapes Line ?shaft \$?shaft_list)
?f1 $<$- (Subshapes Line ?head1 \$?head1_list)
?f2 $<$- (Subshapes Line ?head2 \$?head2_list)
;; make sure lines are unique
(test (uniquefields \$?shaft_list \$?head1_list))
(test (uniquefields \$?shaft_list \$?head2_list))
(test (uniquefields \$?head1_list \$?head2_list))
;; get accessible components of each line
(Line ?shaft ?shaft_p1 ?shaft_p2 ?shaft_midpoint ?shaft_length)
(Line ?head1 ?head1_p1 ?head1_p2 ?head1_midpoint ?head1_length)
(Line ?head2 ?head2_p1 ?head2_p2 ?head2_midpoint ?head2_length)
;; test constraints
(test (coincident ?head1_p1 ?shaft_p1))
(test (coincident ?head2_p1 ?shaft_p1))
(test (equalLength ?head1 ?head2))
(test (acuteMeet ?head1 ?shaft))
(test (acuteMeet ?shaft ?head2))
;;deleted code: get line with endpoints swapped

=> ;; FOUND ARROW (ACTION TO BE PERFORMED)
;; set aliases
(bind ?head ?shaft_p1)
(bind ?tail ?shaft_p2)
;; add arrow to sketch recognition system to be displayed properly
(bind ?nextnum (addshape Arrow ?shaft ?head1 ?head2 ?head ?tail))
;; add arrow to Jess fact database
(assert (Arrow ?nextnum ?shaft ?head1 ?head2 ?head ?tail))
(assert (Subshapes Arrow ?nextnum (union\$ \$?shaft_list

\$?head1_list \$?head2_list)))
(assert (DomainShape Arrow ?nextnum (time)))
;; remove Lines from Jess fact database for efficiency
(retract ?f0) (assert (CompleteSubshapes Line ?shaft \$?shaft_list))
(retract ?f1) (assert (CompleteSubshapes Line ?head1 \$?head1_list))
(retract ?f2) (assert (CompleteSubshapes Line ?head2 \$?head2_list))
;;deleted code: retract line with endpoints swapped

)

Figure 2: Automatically Generated Jess rule for the arrow
definition in the left box of Figure 1.

mation of a shape definition into a Jess rule.
If a shape is recognized (i.e., the rule pattern is satisfied),

the rule action is fired. In the transformation process the rule
action is specified to do three things: 1) add the new shape to
the database of recognized shapes so it can be displayed cor-
rectly and edited; 2) add the new fact to the rule based sys-
tem so more complicated shapes can be formed from it; 3)
remove recognized components from the database. This last
step improves efficiency at the expense of possibly missing
some shape interpretations.

Jess then confirms that this newly created shape does not
share any subcomponents with any other domain shape. If it
does, then only one of the domain shapes will remain, either
the shape containing more primitive components (Ockhams
razor), or (in the case of a tie) the shape that was drawn first.

While the arrow example used throughout this paper is
composed of a fixed number of components (3 lines), our
architecture can also support shapes composed of a variable
number of components, such as a polyline or polygon. A
shape with a variable number of components is transformed
into two Jess rules, the first recognizes the base case, and the
second rule handles the recursive case. For example, the base
case rule of a polyline recognizes a polyline consisting of
two lines, while the recursive case rule recognizes a polyline
consisting of an existing polyline and an additional line.

Generating Editing Recognizers

The shape definition includes information on how a shape
can be edited. The arrow definition from Figure 1 specifies

three editing behaviors: dragging the head, dragging the tail,
and dragging the entire arrow. Each editing behavior consists
of a trigger and an action. Each of the three defined editing
commands are triggered when the user places and holds their
pen on the head, tail, or shaft, and then begins to drag the
pen. The actions for these editing commands specify that the
object should follow the pen either in a rubber band fashion
for the head or tail of the arrow or by translating the entire
shape.

The drawing panel watches for all of the possible edit-
ing triggers predefined in LADDER. When one occurs it
calls the appropriate method to check if an editing behav-
ior should occur. Each of the editing actions (such as trans-
late, rotate, scale, rubber-band, or delete) is predefined for
all shapes.

During the translation process, we transform all of the
editing specifications of the shape definitions into one Java
class. After a trigger first occurs (such as click or holdDrag),
the Java class examines all of the viewable shapes with that
trigger defined to see if an editing behavior has begun. For
instance, holdDrag is defined as the pen initially resting
on the screen for .4 seconds, and then dragging across the
screen. After holdDrag is detected, the system looks to see
if the pen is located over the head, tail, or shaft of an ar-
row. If not, the system treats the stroke as a drawing gesture.
If there is a shape underneath the stylus that has that trig-
ger specified, the editing action occurs. In our example, if
the head of an arrow is underneath the pen, the arrow will
rubber-band with the head following the path of the pen and
the tail remaining fixed. 5

Generating Shape Exhibitors

The shape definition includes information on how a shape
should be displayed once it is recognized. A shape or its
components may be displayed in any color in four differ-
ent ways: 1) the original strokes of the shape, 2) the cleaned
up version of the shapes, where the best-fit primitives of the
original strokes are displayed, 3) the ideal shape, which dis-
plays the primitive components of the shape with the con-
straints solved6, or 4) another custom shape which speci-
fies which shapes (line, circle, rectangle, etc.) to drawn and
where. The arrow definition from Figure 1 specifies that the
arrow should be displayed in the color red, that head1 and
head2 should be drawn using cleaned-strokes (a straight line
in this case), and that the shaft should be drawn using the
original strokes.

LADDER has a number of predefined display methods,
including color, original-strokes, and cleaned-strokes, which
are hand-coded into the domain independent recognition
system for use with all shapes. The domain independent
recognition system also defines how to handle hierarchical
display of shape, and provides generalized methods for al-

5Rubber-banding allows users to simultaneously rotate and
scale and object, assuming a fixed rotation point is defined. This ac-
tion has proved useful for editing arrows and other linking shapes.

6We currently solve only a subset of the constraints and are at-
tempting to develop and integrate a more sophisticated geometric
constraint solver.

tering the display of a shape, including translate, scale, and
rotate.

During the transformation process we create a shape ex-
hibitor (a Java class to display the shape) for each shape.
This shape exhibitor specifies how the shape is to be drawn
(original, cleaned, ideal, or custom). If the ideal strokes are
to be drawn, the translator creates a method that displays
the ideal strokes by attempting to solve the constraints of
the shape (e.g., ensuring that points are coincident if the de-
scription indicates so) and then redraws the shape with the
constraints solved. Likewise, if a custom display is defined,
the translator creates a method that displays the specified
shapes.

The shape exhibitor controls the displaying of the newly
created shape and ensures that the components (e.g., the
original strokes) are not drawn, but only the abstract shape
(e.g., arrow) itself. The shape exhibitor keeps track of the lo-
cation of the accessible components and aliases of a shape,
which 1) can be used by the editing module to determine
if an editing gesture is occurring, and 2) ensures that when
a shape is moved or edited its components are moved or
deleted with it. The shape exhibitor also keeps a original
copy of each of the accessible components and aliases for
use when scaling an object to ensure that we don’t lose any
precision after several scalings.

Testing
To test our approach we have built and transformed domain
descriptions for a variety of domains including UML class
diagrams, flow charts, finite state machines, a simplified ver-
sion of course of action diagrams, and a simple subset of
2-dimensional mechanical engineering diagrams. Figure 3
shows the variety of shapes recognized to date.

Figure 4, a flowchart of the domain independent recogni-
tion system described in this paper, was created using the
flowchart domain sketch recognition system. The domain
description specified that Actions, Decisions, Start/Ends
should be displayed in blue and the Links in red, both us-
ing cleaned-strokes. 7

Related Work in our group
(Sezgin 2003) is working on a translation mechanism that
can improve recognition efficiency using HMM techniques.
(Alvarado 2003) is developing a more sophisticated domain
independent recognition system using Bayesian networks to
more effectively deal with the large amount of uncertainty
present in messy hand-drawn sketches. (Veselova 2003) has
developed a system to generate a symbolic shape definition
from a single drawn example.

Conclusions
Future Work
We would like to improve our translator and domain inde-
pendent recognition system to include the handling of soft

7Text is also a primitive shape. Text can be entered using a
keyboard or a handwriting recognizer GUI provided in Microsoft
Tablet XP. The text appears at the last typed place.

constraints and continue to test it on additional domains.
While we are attempting to make LADDER as intuitive as
possible, shape definitions can be difficult to describe textu-
ally, and we would like to integrate work from (Veselova
2003) to automatically generated shape descriptions from
a drawn example. However, even automatically generated
shapes will need to be checked and modified. Thus we would
like to create a GUI to debug a domain description, provid-
ing interfaces to test whether the shape is under-constrained
(by automatically generating valid example shapes) or over-
constrained (by allowing the user to draw several test exam-
ples).

Contributions

We suggest an innovative framework for sketch recogni-
tion that uses a single, customizable domain independent
recognition system for use with many domains. This paper
presents the first translator which takes symbolic descrip-
tions of how shapes are drawn, displayed, and edited in a
domain and automatically transforms them into shape rec-
ognizers, editing recognizers, and shape exhibitors for use
in a domain independent sketch recognition system. To ac-
complish this, we created 1) LADDER, a symbolic language
for describing how shapes are drawn, displayed, and edited
in a domain, 2) the translator described above, and 3) a sim-
ple domain independent recognition system that uses the
newly translated components to recognize, display, and al-
low editing of the domain shapes. The implementation of
this translator and domain independent sketch recognition
system serves to show both that such a framework is feasible
and that LADDER is an acceptable language for describing
domain information.

References
Alvarado, C. 2000. A natural sketching environmant: Bringing
the computer into early stages of mechanical design. Master’s
thesis, MIT.

Alvarado, C. 2003. Dynamically constructed bayesian networks
for sketch understanding. Proceedings of the 3nd Annual MIT
Student Oxygen Workshop.

Bimber, O.; Encarnacao, L. M.; and Stork, A. 2000. A multi-
layered architecture for sketch-based interaction within virtual
environments. Computer and Graphics: Special Issue on Cal-
ligraphic Interfaces: Towards a New Generation of Interactive
Systems 24(6):851–867.

Caetano, A.; Goulart, N.; Fonseca, M.; and Jorge, J. 2002a. JavaS-
ketchIt: Issues in sketching the look of user interfaces. Sketch
Understanding, Papers from the 2002 AAAI Spring Symposium.

Caetano, A.; Goulart, N.; Fonseca, M.; and Jorge, J. 2002b.
Sketching user interfaces with visual patterns. Proceedings
of the 1st Ibero-American Symposium in Computer Graphics
(SIACG02) 271–279.

Costagliola, G.; Tortora, G.; Orefice, S.; and Lucia, D. 1995. Au-
tomatic generation of visual programming environments. In IEEE
Computer, 56–65.

Do, E. Y.-L. 2001. Vr sketchpad - create instant 3d worlds by
sketching on a transparent window. CAAD Futures 2001, Bauke
de Vries, Jos P. van Leeuwen, Henri H. Achten (eds) 161–172.

Finite State Machines

Flowcharts

UML Class Diagrams

Course of Action Diagrams

Empty Transition Empty State Transition State

text
text

Transition Empty Start Transition DescisionStart

texttext

Empty Action

text

Action

text

Empty Decision Decision

Dependency

Empty Interface Empty Class

Interface Relation Inheritance Aggregation Dotted Arrow

Interface Class

text text

Mechanical Engineering Diagrams

Rod
Gravity Polygon

Pin Joint
Wheel Anchor

Unit Armor Calvary Reconnaissance InfantryAir Defense

Air Defence UnitArmored Unit Armored Calvary

Air Assalt Unit

Air Assalt Infantry

Airborne

Airborne Unit Airborne Infantry

PRESS

Corps Media Center

MI

Military Intelligence

Mortar

Self Propelled Artillery Observation Post

PA

Public Affairs

Artillery

Mortuary Affaires Mechanized Infantry Light Infantry

L

Figure 3: Domains and their shapes for which we have automatically generated sketch recognition systems.

Figure 4: Flowchart of domain independent system drawn using system. Left side represents the original strokes. Right side
represents the cleaned up drawing.

Friedman-Hill, E. 2001. Jess, the java expert system shell.
http://herzberg.ca.sandia.gov/jess.

Futrelle, R. P., and Nikolakis, N. 1995. Efficient analysis of com-
plex diagrams using constraint-based parsing. In ICDAR-95 (In-
ternational Conference on Document Analysis and Recognition),
782–790.

Gross, M. D., and Do, E. Y.-L. 1996. Demonstrating the elec-
tronic cocktail napkin: a paper-like interface for early design.
’Common Ground’ appeared in ACM Conference on Human Fac-
tors in Computing (CHI) 5–6.

Gross, M.; Zimring, C.; and Do, E. 1994. Using diagrams to ac-
cess a case library of architectural designs. In Gero, J., and Sud-
weeks, F., eds., Artificial Intelligence in Design ’94. Netherlands:
Kluwer Academic Publishers. 129–144.

Hammond, T., and Davis, R. 2002. Tahuti: A geometrical sketch
recognition system for uml class diagrams. AAAI Spring Sympo-
sium on Sketch Understanding 59–68.

Hammond, T., and Davis, R. 2003. Ladder: A language to de-
scribe drawing, display, and editing in sketch recognition. Pro-
ceedings of the 2003 Internaltional Joint Conference on Artificial
Intelligence (IJCAI).

Hse, H.; Shilman, M.; Newton, A. R.; and Landay, J. 1999.
Sketch-based user interfaces for collaborative object-oriented
modeling. Berkley CS260 Class Project.

Jacob, R. J. K.; Deligiannidis, L.; and Morrison, S. 1999. A
software model and specification language for non-WIMP= user
interfaces. ACM Transactions on Computer-Human Interaction
6(1):1–46.

Lecolinet, E. 1998. Designing guis by sketch drawing and visual
programming. In Proceedings of the International Conference on
Advanced Visual Interfaces (AVI 1998)., 274–276. AVI.

Lin, J.; Newman, M. W.; Hong, J. I.; and Landay, J. 2000. Denim:
Finding a tighter fit between tools and practice for web site de-
sign. In CHI Letters: Human Factors in Computing Systems, CHI
2000, 510–517.

Long, A. C. 2001. Quill: a Gesture Design Tool for Pen-based
User Interfaces. Eecs department, computer science division,
U.C. Berkeley, Berkeley, California.

Mahoney, J. V., and Fromherz, M. P. J. 2002. Handling ambigu-
ity in constraint-based recognition of stick figure sketches. SPIE
Document Recognition and Retrieval IX Conf., San Jose, CA.

Mahoney, J. V., and Frommerz, M. P. J. 2002. Three main con-
cerns in sketch recognition and an approach to addressing them.
In Sketch Understanding, Papers from the 2002 AAAI Spring Sym-
posium, 105–112. Stanford, California: AAAI Press.

Pittman, J.; Smith, I.; Cohen, P.; Oviatt, S.; and Yang, T. 1996.
Quickset: A multimodal interface for military simulations. Pro-
ceedings of the 6th Conference on Computer-Generated Forces
and Behavioral Representation 217–224.

Rubine, D. 1991. Specifying gestures by example. In Computer
Graphics, volume 25(4), 329–337.

Sezgin, T. M. 2001. Feature point detection and curve approxi-
mation for early processing in sketch recognition. Master’s thesis,
Massachusetts Institute of Technology.

Sezgin, T. M. 2003. Recognition efficiency issues for freehand
sketches. Proceedings of the 3nd Annual MIT Student Oxygen
Workshop.

Stiny, G., and Gips, J. 1972. Shape grammars and the generative
specification of painting and sculpture. In Freiman, C. V., ed.,
Information Processing 71. North-Holland. 1460–1465.

Veselova, O. 2003. Perceptually based learning of shape de-
scriptions. Master’s thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

Zue, and Glass. 2000. Conversational interfaces: Advances and
challenges. Proc IEEE 1166–1180.

