
A Domain Description Language for Sketch Recognition

Tracy Hammond HAMMOND@AI.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

Abstract
In this paper, we propose a domain description
language used to describe domain-specific infor-
mation to a domain-independent sketch recogni-
tion system. Although the language is primarily
based on shape, the domain description can in-
clude any type of information that would be help-
ful to the recognition process, such as stroke or-
der or direction. The language consists of pre-
defined shapes, constraints, and editing behav-
iors, as well as a syntax for specifying a domain
description.

1. Introduction
Pervasive environments, complete with digital whiteboards
and pocket PC’s, have increasingly included applications
with sketchable interfaces. Sketch recognition applica-
tions built for the Oxygen platform include Ligature (Foltz,
2001), Tahuti (Hammond & Davis, 2002), and Assist (Al-
varado, 2000) / Assistance (Oltmans, 2000). To date,
sketch recognition systems have been domain-specific,
with the recognition details of the domain hard-coded into
the system. A domain-independent recognition system is
advantageous since it may be used for several domains, in-
creasing the flexibility and capabilities of a system. How-
ever, the system cannot identify the domain shapes if it
doesn’t know that they are. In order to properly recognize
a sketch of a particular domain, domain-specific informa-
tion must be supplied to the domain-independent recogni-
tion system.

Sketch recognition can be done by measuring many fea-
tures. Many of these features are not necessarily correlated
to the shape of the drawn object and place requirements on
the user to draw an object in a single stroke and in a par-
ticular direction. By recognizing objects based on shape,
we not only ensure correlation between the drawn shape
and the recognized shapes, but we also enable designers to
draw the shapes as they would naturally.

In this paper, we propose a domain description language
used to describe domain-specific information to a domain-
independent sketch recognition system. Although the lan-

guage is primarily based on shape, the domain description
can include any type of information that would be helpful
to the recognition process, such as stroke order or direction.
By describing domain descriptions using the language’s
syntax, designers can add sketch recognition to their user
interfaces.

1.1 Previous Work

Shape description languages have been around for a long
time (Stiny & Gips, 1972). These grammars have been
studied widely within the field or architecture, and many
systems are still built using shape grammars (Gips, 1999).
However, they have been developed for design genera-
tion rather than recognition, and don’t provide for non-
graphical information, such as stroke order, that may be
helpful in recognition.

Within the field of sketch recognition, there have been other
attempts to create shape languages for sketch recognition.
Mahoney and Fromherz (2002) use a language to model
and recognize stick figures. The language currently is not
hierarchical, making large objects cumbersome to describe.
Caetano et al. (2002) use fuzzy relational grammars and
Bimber et al. (2000) use BNF grammars to describe shape
information. Both lack the ability to describe non-shape
domain information such as stroke order or direction and
editing behavior information.

2. Domain Description Language
The difficulties in determining the language’s components
and syntax include ensuring that the language allows all
common helpful domain information to be specified. The
language must also encourage and facilitate the creation of
correct programs. For instance, to encourage the reuse of
geometric shape definitions, the language distinguishes be-
tween geometric shape definitions (shapes usable in many
domains) and domain shapes (shapes specific to a domain).
The language also provides abstract shape definitions that
describe a class of similar shapes to prevent rewriting of
identical attributes.

The language consists of pre-defined shapes, constraints,
editing behaviors, as well as a syntax for combining them.
A domain description is specified by 1) a list of the shapes



and shape compositions in the domain, 2) shape definitions,
3) domain shape definitions, 4) abstract shape definitions,
5) domain shape composition definitions (how shapes in-
teract), 6) constraint definitions, and 7) editing behavior
definitions.

2.1 Shape Definitions

A shape definition describes shapes usable in multiple do-
mains. A shape definition is composed of seven compo-
nents. The description (line 1 in Figure 1) is a textual
description of the shape. The is-a section (line 2) is an
indication of any class of abstract shapes that it belongs
to. The components (line 3) include the geometrical shapes
of which this shape is composed. (Shapes are defined hi-
erarchically.) Note that the TriangleArrow is composed
of a pre-defined shape Line as well a user-defined shape
OpenArrow. The constraints (line 4) specify the neces-
sary relationships and can also specify probable, but not
required, drawing order. For instance, a probable draw-
ing order may be shaft, head1, l, head2. All constraints
in this example are pre-defined. The derived properties
(line 5) allows us to compute certain properties and name
them for use later. The display section (line 6) defines what
should be displayed on the screen. The default is the orig-
inal strokes. Generally, the original strokes are shown for
all geometrical shapes, and the display only changed for
domain shapes. Editing behaviors (line 7) can be defined
for each shape. The editing behavior below allows the user
to move the entire arrow by clicking and dragging the shaft.
The user can also click and drag the head or tail of the arrow
while the opposite end remains fixed; the shaft stretches
and rotates as appropriate.

Figure 1: Shape Definition for a Triangle Arrow.

(define sketch-shape TriangleArrow
(description "An arrow with a triangle head") %1
(is-a Arrow) %2
(components (OpenArrow oa) (Line l)) %3
(constraints %4
(meet l.p1 oa.head1.p1) (meet l.p2 oa.head2.p1)
(angle oa.shaft l 90) (angle l oa.head1 45)
(angle l oa.head2 45)
(probable draw-order oa.shaft oa.head1 l oa.head2))

(derived-properties %5
(Point head oa.shaft.p2) (Point tail oa.shaft.p2)
(Line shaft oa.shaft) (Line head1 oa.head1)
(Line head2 oa.head2))

(display %6
(cleaned_strokes shaft)(ideal_strokes l head1 head2)

(editing-behavior %7
(click_hold_drag head
(fix tail) (stretch_scale_rotate this) (move head))

(click_hold_drag tail
(fix head) (stretch_scale_rotate this) (move head))

(click_hold_drag shaft (move this))
(scribble shaft (delete this))))

3. Conclusion
3.1 Future Work

In the future, we will test human usability by asking users
to develop domain descriptions using the proposed lan-

guage. We will test that these descriptions agree with
the users’ intensions by developing a simple domain-
independent sketch recognition system.

3.2 Contributions

In this paper we present a language for describing domain-
specific information to a domain-independent sketch recog-
nition system. The language is based on shape to ensure
correlation between the drawn shape and the recognized
shape, and provides for natural sketching interaction. The
language is different from other such languages because it
can be also be to describe non-shape information, including
display information, editing behavior, and drawing order.

Acknowledgements
The language described in this paper is part of a larger
project (Hammond et al., 2002) that includes learning
shape descriptions, compiling shape descriptions, and rec-
ognizing sketches based on these descriptions. This work
is being done by members of the Design Rationale Group
at MIT, lead by Randall Davis, and include Christine Al-
varado, Tracy Hammond, Michael Oltmans, Metin Sezgin,
and Olya Veselova. This work is supported in part by the
MIT Project Oxygen.

References
Alvarado, C. (2000). A natural sketching environmant: Bringing

the computer into early stages of mechanical design. Master’s
thesis, MIT.

Bimber, O., L.M.Encarnao, & Stork, A. (2000). A multi-layered
architecture for sketch-based interaction within virtual environ-
ments. Computer and Graphics.

Caetano, A., Goulart, N., Fonseca, M., & Jorge, J. (2002). Javas-
ketchit: Issues in sketching the look of user interfaces. AAAI
Spring Symposium on Sketch Understanding.

Foltz, M. (2001). Ligature, gesture-based configuration of the e21
intelligent environment. MIT Student Oxygen Workshop.

Gips, J. (1999). Computer implementation of shape grammars.
NSF/MIT Workshop on Shape Computation.

Hammond, T., & Davis, R. (2002). Tahuti:a geometrical sketch
recognition system for uml class diagrams. AAAI Spring Sym-
posium on Sketch Understanding, 59–68.

Hammond, T., Sezgin, M., Veselova, O., Adler, A., Oltmans, M.,
Alvarado, C., & Hitchcock, R. (2002). Multi-domain sketch
recognition. MIT Student Oxygen Workshop.

Mahoney, J. V., & Fromherz, M. P. J. (2002). Three main concerns
in sketch recognition and an approach to addressing them.
AAAI Spring Symposium on Sketch Understanding, 105–112.

Oltmans, M. (2000). Understanding naturally conveyed explana-
tions of device behavior. Master’s thesis, MIT.

Stiny, G., & Gips, J. (1972). Shape grammars and the generative
specification of painting and sculpture. Information Process-
ing, 1460–1465.


