MIT Artificial Intelligence Laboratory, September 2002 1

Dr. Jones: A Software Design Explorer’s Crystal Ball

Mark A. Foltz

The Problem: Most of software design is redesign. Redesign happens when the programmer finds
a better solution for the initial design problem or the problem itself changes. Yet there is a dearth of
effective tools for effective software redesign — it proceeds primarily by planning with pen and paper,
away from the computer where tools could help the programmer the most. To address this problem, I
am developing Dr. Jones, an assistant that helps the programmer improve the design of Java programs.

Dr. Jones diagrams the design of a Java program and allows the user to improve its design by ap-
plying refactorings, localized patterns of structural change in object-oriented programs that improve
their design, without changing their visible behavior [1]. Dr. Jones records the programmer’s intended
refactorings and updates the diagram with the resulting (presumably improved) design. It will support
the kind of design exploration a programmer would ordinarily do with pen and paper, while also pro-
viding a “crystal ball:” the ability to see design evolve. This facilitates exploring the design space of the
program, enabling the programmer to choose the best alternative design.

Motivation: Effective software redesign is crucial step in reducing the cost of software maintenance.
But planning such redesign is presently a cumbersome manual process. The first step — getting a clear
picture of the current design — typically requires a programmer to manually reverse engineer the pro-
gram into hand-drawn diagrams. Next, problems and necessary refactorings are noted on these dia-
grams. Finally, the programmer returns to the source and implements the refactorings using the dia-
gram as a guide. If further refactoring is needed — or the refactoring plan has to be rethought — this
process must begin from scratch.

Tools like Dr. Jones have immense potential for streamlining this process. Diagrams that accurately
reflect the current program design can be generated automatically by analyzing source code. Refactor-
ing proceeds by interacting with the diagram, where cumulative impact can be measured, alternatives
explored, and plans recorded, without the need for manual redrawing.

Previous Work: Nearly all existing refactoring systems are based on the metaphor of source code trans-
formation — a refactoring immediately alters the source text of the program [2]. This limits the pro-
grammer to refactorings that can be done safely and automatically. Partially automating source-level
refactorings doesn’t help, because it forces the programmer to make detailed programming decisions
when she would rather be thinking about design.

On the other hand, software diagramming tools produce diagrams that help the programmer un-
derstand existing programs, without the ability to redesign them [3]. These tools, though useful, aren’t
focused on a specific task. Thus, they often produce overly complicated diagrams that contain too much
information, or choose to elide information that might be crucial for design decisions.

Dr. Jones addresses these limitations. Because it refactors design, not source, it can provide a wider
refactoring vocabulary to the programmer. And because refactorings are local transformations on pro-
gram structure — like moving a method from one class to another — it can produce more focused and
more relevant diagrams that general visualization tools.

Approach: The example in Figure 1 illustrates my approach. At the top is part of a UML-style dia-
gram of a simple calendar application, which Dr. Jones can produce by reverse engineering the pro-
gram’s source. Dr. Jones’ user chooses to change the design by “pulling up” the getTodoText() and
getApptText() methods (which duplicate functionality) into a getltemText() method in the superclass. At
the bottom of the figure, Dr. Jones has transformed the design to reflect this refactoring, and notes that
the todoText and apptText fields (in italics) may need to be pulled up as well, since they were used in the
corresponding original get methods®.

The user may then choose to pursue this refactoring immediately, or explore additional design
changes using other refactorings. Refactorings that Dr. Jones suggests are kept as “to-dos” so the pro-
grammer can revisit them at a later time. The outcome of a session with Dr. Jones is a list of the chosen

IThis functionality is not yet implemented in the Dr. Jones prototype.

Calendar |<> I Calendarltem |

Todo Appointment

getTodoText():String getApptText():String

Calendar > Calendarltem

getltemText():String

Todo Appointment

todoText: String apptText: String

Figure 1: A refactoring interaction with Dr. Jones.

refactorings and their affected source code elements, so the programmer can later return to the source
code to implement them.

Impact: Two long-term goals of software engineering research are software reuse and design rationale
capture. The two are closely related, as good design rationale gives programmers valuable information
on how to reuse software most effectively. Dr. Jones moves us closer to both of these goals. With a
redesign tool, programmers will be more willing to adapt existing software instead of starting from
scratch. And, by bringing the redesign process from pen-and-paper to the computer, it can serve as a
platform for capturing valuable (re)design rationale.

Future Work: Dr. Jones faces two key challenges. First, it needs a refactoring vocabulary that makes
sense to the programmer as well as the tool. I am developing a taxonomy of known refactorings around
verbs like RENAME, MOVE, and ABSTRACT. With this taxonomy, the programmer can describe her
intentions to Dr. Jones, and Dr. Jones can interpret them to produce the intended hypothesized design.
The second challenge is to convey the outcome of these refactorings to the programmer with concise
and meaningful diagrams. I am also developing a focus tracking mechanism that will follow the pro-
grammer’s local refactoring context to render the most relevant parts of the program design.

Once these challenges are addressed, Dr. Jones could be extended to handle larger scale refactorings
like design patterns, implement the refactoring plans it produces (under programmer guidance), or
critique designs and suggest refactorings (using appropriate domain knowledge). Also, I intend to
explore more natural interfaces to Dr. Jones, because programmers should be able to converse with
their software design tools as naturally as with each other.

Research Support: This research is supported by MIT Project Oxygen.

References:

[1] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Object Technology
Series. Addison-Wesley, Reading, MA, USA, 1999. With contributions by Kent Beck, John Brandt,
William Opdyke, and Don Roberts.

[2] Don Roberts, John Brandt, and Ralph Johnson. A refactoring tool for Smalltalk. In Proc. Theory and
Practice of Object Systems, 1997.

[3] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Miiller. Rigi: A visualization environment for
reverse engineering. In Proceedings of the 1997 International Conference on Software Engineering, Boston,
MA, USA, May 1997.

