
MASSACHVSETTS INSTITVTE OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPVTER SCIENCE

Proposal for Thesis Research in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Title: Dr. Jones: A Software Archaeologist’s Magic Lens

Submitted by: Mark A. Foltz
MIT Artificial Intelligence Lab (Signature of author)
200 Technology Square, Room NE43-808
Cambridge, MA 02139 USA

Date of submission: May 22, 2001

Expected Date of Completion: May, 2002

Laboratory where thesis will be done: MIT Artificial Intelligence Laboratory

Brief Statement of the Problem

Program comprehension remains a major bottleneck for software maintenance. When a pro-
grammer must understand a large legacy program whose documentation is scarce, out-of-date, or
irrelevant, she must browse its source code to build an effective mental model of its structure and
behavior. But source code is far from an ideal representation for this task.

I propose a system, DR. JONES, to help a programmer understand an unfamiliar program. DR.
JONES is a magic lens over the program that reveals information that usually requires effort to
extract from source code. This information is broken into tightly coupled views of the program’s
structure and behavior that, taken together, help the programmer build a good mental model of
the program. DR. JONES presents these views as diagrams, to engage the programmer’s perception
in extracting knowledge about the program.

The design of DR. JONES will be motivated by user studies to find the kinds of knowledge
programmers seek to extract from unfamiliar programs, and the strategies they employ to do so.
DR. JONES will make use of techniques like multiscale browsing, design pattern recognition, and
“software jiggling” to permit the orderly and conceptual exploration of an unfamiliar program.



DR. JONES: A Software Archaeologist’s Magic Lens
Doctoral Thesis Proposal

Mark A. Foltz
MIT Artificial Intelligence Lab

mfoltz@ai.mit.edu
May 24, 2001

Abstract

Program comprehension remains a major bottleneck for software maintenance. When a
programmer must understand a large legacy program whose documentation is scarce, out-of-
date, or irrelevant, she must browse its source code to build an effective mental model of its
structure and behavior. But source code is far from an ideal representation for this task.

I propose a system, DR. JONES, to help a programmer understand an unfamiliar program.
DR. JONES is a magic lens over the program that reveals information that usually requires
effort to extract from source code. This information is broken into tightly coupled views of
the program’s structure and behavior that, taken together, help the programmer build a good
mental model of the program. DR. JONES presents these views as diagrams, to engage the
programmer’s perception in extracting knowledge about the program.

The design of DR. JONES will be motivated by user studies to find the kinds of knowledge
programmers seek to extract from unfamiliar programs, and the strategies they employ to do
so. DR. JONES will make use of techniques like multiscale browsing, design pattern recogni-
tion, and “software jiggling” to permit the orderly and conceptual exploration of an unfamiliar
program.



Let us change our traditional attitude to the construction of programs. Instead of imagining
that our main task is to instruct a computer what to do, let us concentrate rather on explaining
to human beings what we want a computer to do.

Donald Knuth1

I’m like a bad penny, I always turn up.
Dr. Henry “Indiana” Jones

1 Sarah Singleton’s Expedition

Consider the situation of Sarah Singleton, a programmer who has just joined the software team
for a hockey equipment retailer. Sarah is asked to add wish list functionality to the retailer’s Web
site as soon as possible (of course).

First, she must understand enough about the site’s software to ensure that her new wish list
feature will interact properly with the existing code. So, she browses the code and documentation,
and discusses the system with the programmers currently maintaining it. During the course of
this investigation she builds a mental model of its workings: a “mental picture” of the structure
(classes and APIs) and behavior (control and data flow) of the system.

A similar challenge faces any programmer who must understand existing software before she
is able to maintain or enhance it. If she is lucky there will be well-written documentation, both
within the source code and in external documents. But if documentation is incomplete, out-of-
date, or irrelevant to the task at hand, then work remains to discover the program’s structure and
behavior and build a useful mental model. Knowing where to begin and what is relevant is half
the challenge, especially in programs with tens of thousands of lines of code (LoC).

I propose research to develop a tool, DR. JONES, that assists a programmer in program com-
prehension. A guiding metaphor is that the programmer is a software archaeologist who must
investigate a mysterious device from long ago to gain insight into its structure and behavior. DR.
JONES acts as the archaeologist’s magic lens, allowing her to immediately see relationships and
patterns in the program that would ordinarily require much more effort to deduce.

DR. JONES analyzes a program2 and presents interactive, graphical views of it to the program-
mer. These views are designed to make explicit the kinds of concepts and patterns that program-
mers use to reason about and describe their programs. The programmer explores the program
through DR. JONES’ magic lens to incrementally build an effective mental model of it.

1.1 The Thesis

The thesis of this research is that a programmer’s mental model of a program is organized around
a small number of hierarchical, tightly coupled views of the program’s structure and behavior, the

1In Literate Programming, (Knuth, 1991).
2Here a program is assumed to be an object-oriented program written in Java (Joy et al., 1998) or a similar language.



design patterns used in its development, and concepts from the application domain.
A program’s structure is the information contained in a static snapshot of the program, which

changes little during execution. A program’s behavior captures the dynamic aspects of its exe-
cution, such as its objects’ lifecycles and threads’ timelines. Design patterns are recurring pro-
gramming motifs that usually involve both structure and behavior; for example, iteration over a
list, or an object factory. Concepts from the application domain relate the program’s structure and
behavior to the functionality it is intended to implement.

This research has two goals. The first goal is to determine which views can be effective for pro-
gram comprehension through a series of exploratory user studies. The second goal is to develop
DR. JONES, a system which lets a programmer explore these views of an unfamiliar Java program.

The principles guiding my approach to this problem are:

• To attend to the concepts and strategies programmers use to understand programs, to char-
acterize the gap between the program’s text and its mental model;

• To employ visualization as a means of presenting program views, to engage the program-
mer’s perceptual faculties for interpreting complex information;

• And, to permit interactive navigation and incremental understanding of the program, so the
programmer is not overwhelmed all at once with the its complexity.

1.2 Proposed Contributions

Much prior research on program comprehension tools has been undertaken. Many approaches
are based on design pattern recognition in programs (Rich and Waters, 1989), as well as structural
or behavioral visualization (Pauw et al., 1998). Others have also taken a cognitively motivated
approach to the development of comprehension tools (Storey et al., 1997).

The main contribution of this research is an approach that closely links program comprehension
to program visualization. I seek to examine how programmers think about programs, and use this
knowledge to present more effective program views through DR. JONES’ magic lens. The goal is to
better bridge the gap between the source code facing the programmer and the the mental model
she needs to maintain and enhance it.

The contributions will potentially impact three established research areas:

1.2.1 Artificial Intelligence

A long-term goal of Artificial Intelligence is the discovery of methods and representations that
allow computers to reason about complex devices and systems. DR. JONES’ program views will be
enhanced by the automated recognition of meaningful patterns in the program. This will require
the development of novel methods and representations for reasoning about software systems.
And, since programs can simulate the behavior of many kinds of systems, it may provide insights
about reverse engineering in a variety of domains.

1.2.2 Software Engineering

This research will also examine the concepts and strategies that programmers use to comprehend
unfamiliar programs. These findings can inform the development of other software engineering
tools, design methodologies, and the education of software engineers. For example, a CASE tool
that allows programmers to express their design in terms of familiar concepts should feel more



natural to use and act as a more competent design assistant. DR. JONES contributes to a growing
research toolset for software maintenance, and assessing its successes and shortcomings will assist
future research in this area.

1.2.3 Design Rationale Capture and Use

Software maintenance activity is a primary motivation for the capture of software design ratio-
nale. The program views provided by DR. JONES will augment manually generated rationale
captured during the design process, such as requirements, specifications, and discussion of alter-
natives. Although DR. JONES’ primary purpose is not to reveal the complete design intent of a
program, it could help the programmer infer some aspects of design rationale that are missing.
(Others have shown that it is possible to infer some design rationale by examining the behavior
of mechanical devices (Raghavan and Stahovich, 1998)). This research looks at the design process
from the artifact backwards, thus suggesting which kinds of rationale are most useful for program
understanding, and should be captured upstream in the design process.

1.3 Back to Sarah Singleton

Let’s return to our software archaeologist and her wish list requirement, now supposing she had
DR. JONES. In Figure 1, she is browsing a view that traces the timeline of a thread handling a
Web request. Her initial investigation reveals that these threads are handled by subclasses of
Transaction in this system, according to the kind of request. She decides she must add two new
subclasses of Transaction , AddToWishList and RemoveFromWishList . She browses the
control flow in and out of existing subclasses of Transaction , to understand how they interact
with other parts of the system. With this knowledge, she can begin to design the APIs for the new
classes.

DrJones

AddToCart

CommitDB

QueryDB
GetCurrentCart

DoCartTransaction

Figure 1: A mockup of DR. JONES showing an execution thread handling a Web request in a
hypothetical Web site.



1.4 Outline

The remainder of this proposal discusses:

• The difficulties encountered in program comprehension when browsing source code;

• User studies to find the strategies and concepts programmers use to comprehend programs;

• A sketch of the user interface for DR. JONES;

• Criteria of success for DR. JONES;

• Possible surprises that may alter the course of this research, its future prospects, and related
work;

• And a schedule of research (in an appendix).

2 Source Browsing Breakdowns

An approximate synonym for program comprehension is reverse engineering: an attempt to in-
fer a program’s design by studying the resulting artifact. This task is made difficult because the
source code is the result of design, but makes explicit little about the design itself. Experienced
programmers bring to bear an immense amount of knowledge to compensate, including the syn-
tax and semantics of the language, design patterns and algorithms, the application domain, and
the purpose of the program. Unfortunately, source code is a difficult representation to work with
for this kind of reasoning.

2.1 The Trouble With Source Code

The main difficulty is that source code is an atomic and linear program specification, while pro-
grammers’ mental models are holistic, made up of densely interrelated concepts. Despite claims
that good program code is almost “self-documenting,” experience shows that it has many draw-
backs. In particular:
Code maximizes modularity. A good software design maximizes the modularity of the resulting
program. In fact, this is the one of the underlying design philosophies of object-oriented program-
ming: break the problem down into the smallest pieces, and assemble a solution from them. But this causes
information about how the pieces are used to be distributed throughout the program. The pro-
grammer must then look in many places to reconstruct their interactions and get a picture of the
overall behavior.
References are nonlinear, source code is linear. A major part of a program’s power is its highly
nonlinear and nonlocal referential structure. But this means it is usually not possible to browse
an unfamiliar program’s call graph without forward references to unseen classes. And, a single
method may refer to many other classes, introducing a high branching factor to resolve all the
references. Yet, source code affords only linear browsing, requiring the programmer to frequently
search through other files and directories to locate class definitions. Hypertext links from class
names to their definitions can automate this process (Kramer, 1999), but code navigation remains
difficult and taxes the programmer’s working memory (Zayour and Lethbridge, 2000).
Lack of context and overviews. A problem related to source code’s linear nature is the small win-
dow onto the program offered by textual browsing. The programmer must retain the context of



the visible program fragment in working memory, such as the enclosing method and class and
the variables in scope. And, it is usually hard to get a “bird’s eye view” of the program show-
ing a structural overview. Integrated development environments help by presenting a browsable
hierarchy of classes and methods, and other work has presents source code maps highlighting
programmers’ changes (Eick, 1998), but providing contexts and overviews suited particularly for
comprehension remains a challenge.
Finding where to start and where to go is half the challenge. Finding the logical starting point(s)
to begin reading source code is difficult, especially in high LoC programs. (The main() method
is not always the best place.) A programmer who delves into a large program must choose which
parts are relevant to her task and prune her browsing accordingly. For me, a typical program
comprehension session begins with a period of flailing about and false starts, until I develop a
clear enough picture of the program to browse in a more directed manner.

2.2 Overcoming Browsing Breakdowns

The difficulties encountered when reading a program’s source code can be summarized by com-
parison with well-written documentation describing the same program. The documentation would
first state the purpose of the program and present a structural overview of its classes and their
relationships before delving into their implementation. If it mentions a class that has yet to be
defined, a short explanation of its function would be provided. Use cases would illustrate how
the classes interact to provide basic functionality. The documentation would present the program
in a manner optimized for comprehension, not execution.

Obviously, reading good documentation is preferred to reading source code. Unfortunately,
good documentation is scarce. DR. JONES is intended to capture some of the aspects of good doc-
umentation, like overviews and orderly exploration, in an interactive environment. Generating
human-quality documentation of an undocumented program remains a long-term goal for this
line of research.

Programmers adopt a variety of strategies for overcoming the limitations of source code brows-
ing, to extract relevant and useful information about the program. The next section describes
planned user studies to collect and analyze those strategies.

3 Comprehension Strategies and Mental Models

DR. JONES will provide program views to help the programmer build a good mental model of the
program. But determining the content of those views – that is, what kinds of program knowl-
edge constitute the mental model – is a difficult and uncertain task. It varies substantially across
applications, organizations, and individuals.

We start with the assumption that mental models of programs are grounded in at least two
kinds of knowledge. The first is the semantics of Java and the object-oriented paradigm, including
concepts like objects, threads, and exceptions. The second is the semantics of the application domain,
the part of the world the program is modeling. A good mental model allows a programmer to
explain the functionality of the application in terms of the architecture of the program and the
semantics of Java.

To understand these mental models more deeply, a place to start is anecdotes and introspec-
tion. When I recently needed to understand a large Java system for a Web site, given little useful
documentation, I began by mapping its structure. I drew a diagram showing the inheritance and



multiplicity relations among its classes, and included some of the classes’ key methods.3 Then,
I mentally simulated the system by tracing the methods called to process and generate different
Web pages. (This turned out to be difficult because every Web page in the site acted as an inde-
pendent starting point for the program.)

In this case, mapping the structure of is-a and has-a relationships in the program was a step
essential to my comprehension, implying a program view containing those relationships would
be useful. But other programmers will use a variety of other strategies, suggesting many other
ways of viewing a program.

3.1 Exploratory User Studies

To gain a broader view of comprehension strategies this research will conduct a series of ex-
ploratory user studies. The goal of the studies is to learn how different programmers go about
software archeology, and the kinds of program knowledge they gather. The basic method will be
to give a subject a small program and ask them to understand the program well enough to main-
tain it. They will be given a task to direct their exploration, such as redesigning the program to
generalize an aspect of its functionality.

While they are browsing the program, we will encourage them to “think out loud” and explain
the intent of their actions. The subject will be videotaped, and we will collect any marks made on
paper or whiteboards. The subject will browse the source code and documentation as a granular
hypertext to facilitate the capture of her browsing behavior.

After the browsing session, the subject may be asked to explain the program in her own words
to the experimenters. Also, subject will be asked about the strategies they used to understand this
particular program, and any general comprehension strategies they find especially helpful.

The purpose of the studies is not to measure performance or to produce a cognitive model
of program comprehension in these conditions. Instead, the results will be analyzed to collect
examples of comprehension strategies and the concepts and patterns the programmer recognizes
in the program.

3.1.1 Preliminary Results

A pilot study with two subjects from the AI Lab has already been carried out. The task for this
study was to design a small program given a problem statement, as opposed to examining an
existing program. However, the subjects were later asked to explain their designs to the experi-
menters, and two interesting observations fell out:

1. Explanations of behavior often proceeded from the user interface backward, tracing the ex-
ecution path in response to a user action (i.e., clicking a button).

2. Subjects used pseudocode to design and describe their program, attesting to the utility of
representations that are similar to program text, at least during the early stages of design.

These results are preliminary, and many more insights like them are needed to make general
statements about programmers’ mental models.

3Unfortunately, the diagram is lost, as I would like to have included it here.



3.2 From Strategies to Models

The purpose of a comprehension strategy is to select some information from the program text,
combine it with background knowledge of Java and the application, and improve the program-
mer’s formative mental model. For example, the structure mapping strategy I employed selected
the inheritance and multiplicity information from the source code of class definitions, and used it
to augment my knowledge of the functional and multiplicity relationships among classes.

Each of the strategies identified in the user studies can be subject to the same analysis. The
goal is to characterize the kind of information the programmer is pulling from the program:

• What parts of the source code did she use to derive the new knowledge?

• Is she using background knowledge of Java, the domain, or both?

• How difficult would it be to extract and present that information automatically? Will pro-
grammer input be needed?

• What is the best way to view that information? How is it coupled to other types of informa-
tion the programmer seeks?

3.3 From Mental Models to Views

When a type of desired program information is identified in the user studies, it will motivate the
inclusion of a program view in DR. JONES. The view will make visible and explicit the relation-
ships and patterns sought by the programmer, and hide irrelevant information. If possible, the
view will make use of graphical and spatial visualization to transform difficult, textual program
comprehension tasks into a perceptual ones.

We expect there to be multiple views, and that they will be tightly coupled: the information
in them will be densely interrelated, and the programmer will want to switch among them fre-
quently. The design of DR. JONES must be sensitive to this fact.

3.4 Variations in Mental Models

Mental models of programs are needed to serve a variety of purposes for a variety of applications.
Below we consider some of the ways mental models vary according to the software maintenance
task and the application domain, and how DR. JONES plans to accommodate those variations.

3.4.1 Variations According to the Task

The knowledge a programmer needs is usually driven by a particular software maintenance task.
The task determines which parts of the program she examines and what knowledge she derives
from them.

Some tasks, like optimization and debugging, require the programmer to locate one small part
of the program and make pinpoint changes. For these tasks global understanding of the program
can help the programmer narrow down the portion that needs changing, but is not strictly neces-
sary (Erdos and Sneed, 1998). Other tasks usually require global understanding, such as redesign,
enhancement, refactoring and integrating subsystems, and documentation writing.

This research focuses on enhancing the programmer’s global understanding, but at varying
levels of detail according to her task. Tools like profilers, bug finders, and design assistants that



assist particular software maintenance tasks could be integrated with DR. JONES to work within
the views it provides. However, replicating their functionality will not be the focus of this work.

3.4.2 Variations According to the Application

Essential to the understanding of any program is knowledge of its domain - the part of the world
that the program is modeling. Imagine trying to understand source code whose identifiers had
been replaced with nonsense names, and furthermore, no information about the program’s pur-
pose was available. It would still be possible, but much more difficult, as reverse engineering the
domain as well as the program would be necessary.

Domain knowledge helps understanding by creating expectations about the objects and ac-
tions one would find in the program. For example, if the programmer knows the program is a
card game, she can infer the likely presence of objects like Card , Deck , and Hand, and methods
like deal() and shuffle() even before looking at the source code. (Of course, it helps if the
code writer has chosen intuitive, mnemonic names for these identifiers.)

A good object-oriented program design closely models the objects and relationships in its ap-
plication domain. Our preliminary user studies and other research suggest that there are two
kinds of program comprehension (Storey et al., 1997). Bottom-up reasoning uses domain-independent
knowledge of Java semantics and object-oriented programming, while top-down reasoning uses
knowledge of the application domain’s objects and actions to seek analogous structures in the
program.

Thus, one significant part of a programmer’s mental model is an analogy between the ob-
jects and actions in the domain and program structures. An ideal program comprehension tool
would recognize the application domain and present the program in those terms, doing the work
of analogy-forming for the programmer. Unfortunately, this means that a different kind of knowl-
edge is needed for each kind of application. Customizing a generic tool with application-specific
knowledge can create a second code base that must be maintained and debugged as the software
evolves (Sayyad-Shirabad et al., 1997). One possibility is dividing the work between the tool and
the archaeologist (as dicussed below).

3.5 The User’s Model Versus the Programmer’s Model

The user’s mental model of the program is distinct from but closely related to the programmer’s
mental model. In particular, the user is concerned with how his intentions map onto the affor-
dances of the interface, and how the affordances activate the program’s functionality. He is rarely
concerned with how the functionality is implemented.

The programmer, on the other hand, seeks a mental model of the program that that can be
used to account for all aspects of its behavior (including internal state) and predict the impact of
changes to its source code. Because one goal of the programmer is to preserve the user’s mental
model of the interface, the programmer usually must be familiar with that model as well. A good
user interface is easy to comprehend, ideally “walk up and use.” Even a well written program, on
the other hand, requires much more effort to understand.

4 Dr. Jones

DR. JONES is a planned program exploration tool for software archeology. Below, I will walk
through a hypothetical session with DR. JONES to illustrate some proposed aspects of its user in-



terface and functionality. A detailed discussion of the interface and an implementation framework
await the completion of the exploratory user studies, which will provide guidance in choosing the
kinds of program comprehension activities it should support.

4.1 Initial Steps: Structural Browsing

The archaeologist’s session begins by starting DR. JONES and pointing it at a directory of source
files. DR. JONES will parse the source to extract its abstract syntax tree, which forms the basis of
structural views of the program. The archaeologist can immediately browse the software in terms
of its syntax (packages, classes, methods, etc.) Structured documentation interspersed with the
source code in the form of Javadoc comments is also extracted and used to annotate the structural
views. Since program syntax is naturally hierarchical, this could be an appropriate place to use a
multiscale diagram browser (such as the one in Figure 2).

Multiscale diagrams assist program comprehension in two ways. First, the archaeologist can
see an overview of the program, and later choose which parts to examine in more detail. The
archaeologist is not faced with all of the program’s complexity at once. Second, the archaeologist
can smoothly vary the level of detail. When the archaeologist wants to drill down to inspect a part
of the program closely, she can do so by a mouse gesture (instead of navigating a filesystem). An
example of this idea is shown in Figure 3, at left.

Viewer

ScratchPad
Sticky Detail Window

Radar

User List

Chat Entry

Chat Log

Figure 2: Plexus, a multiscale diagram browser, here used to visualize a knowledge base of ques-
tions and answers (Foltz et al., 2000).

4.2 Pattern Recognition

Meanwhile, in the background, DR. JONES will attempt to recognize patterns in the program that
correspond to meaningful abstractions and relationships. Examples include the multiplicity rela-
tions among classes, or subsystems that contain several related classes. When discovered, they
will be added to the archaeologist’s view of the program.



Card

Deck

Detail
More

Zoom

Deck

Card

numCards
numSuits
shuffle()

getSuit()
deal()

setSuit()

Deck
numCards
numSuits
shuffle()
deal()

DrJones

Figure 3: Interface ideas for DR. JONES. Left, adjusting the zoom and the level of detail. Right,
“jiggling” software.

One purpose of these patterns is to introduce a hierarchy onto the structural view of the pro-
gram, so that archaeologists can gain overviews and browse at an architectural level. These ar-
chitectural features can derived by searching for object-oriented design patterns (Gamma et al.,
1995), domain-specific concepts, or by relating parts of the program to the archaeologist’s own
annotations (as discussed below).

4.3 Visualizing Behavior: “Software Jiggling”

The archaeologist now wishes to visualize the behavior of the program – the sequence of methods
that are invoked in response to an external event (like a button press). One way to present this
information is through an analogy to mechanical devices, whose behavior can be explored by
jiggling its parts, and seeing what else moves in response. In a program, the archaeologist could
gesture at a method and see where the control flow leads, or at a variable and see all of the reader
and writer threads. Animation can also play a role, for example to show the movement of objects
through the call stack.

For truly interactive exploration, DR. JONES could attach to a running Java virtual machine and
allow the archaeologist to run the program in one window and see the execution trace resulting
from user actions in another (Figure 3, right) – what “software jiggling” might look like.

4.4 The Archaeologist’s Logbook

As the archaeologist makes discoveries, it would be convenient to have a place to record her
findings. Alongside the software explorer could be a multimedia logbook, which could capture
her notes and diagrams as the she browses the program. Ideally, this logbook lives “on top of” the
views provided by DR. JONES, so that notes can be placed in spatial proximity to the relevant parts
of the program. Such a diary should capture this new documentation in a natural and flexible
manner, and be archived with the program so future archaeologists can benefit.

Also, as mentioned, an important part of program comprehension is building an analogy be-
tween the concepts of the application domain and the parts of the program. Since DR. JONES’
views are built bottom-up, one place to incorporate domain-specific knowledge is to provide a



medium for recording rough sketches of the domain model (including text and box-and-arrow
diagrams). As the archaeologist discovers parts of the program that correspond to parts of the
model, the two can be bidirectionally linked to record that fact.

4.5 Finishing Up

The archaeologist is finished when she feels she has gained a global understanding of the program,
sufficient for her task. The end products of her session with DR. JONES would include:

• Diagrammatic views of program structure;

• Derived patterns and relationships in the program;

• Traces of program behavior, presented in terms of program structures;

• The archaeologist’s own findings and notes, closely linked with the program text.

5 Assessment

Assessing the results of this research will be tricky – a program comprehension tool is very un-
likely to help all programmers understand all programs. However, I plan to approach the problem
by tackling the most obvious views and simple programs first, and then evolving the design of
DR. JONES to handle more complicated cases. From our initial explorations, a view of program
structure is a logical starting point.

The research will then proceed in multiple phases of exploratory user studies, development
and prototyping of DR. JONES, and evaluation. The milestones for progress will center around
three criteria: DR. JONES’ ability to explain simple programs, favorable comparisons with Javadoc,
and scaling results to large programs.

5.1 Explaining Simple Programs

The initial goal of DR. JONES is to produce reasonably complete and correct explanations of simple
programs: for example, a calendar application that lets a user track his appointments. A small
group of these programs will form a training set for design pattern recognition and be used to
prototype the user interface. The initial milestone for the development of DR. JONES is meaningful
and complete visualization of simple programs, which can be evaluated by inspection.

5.2 Comparison With Javadoc

The goal of DR. JONES is to help programmers build mental models of programs, which is usually
done by reading documentation and browsing source. DR. JONES succeeds if programmers can
understand programs more easily with it than with standard program documentation.

A baseline for comparison is Javadoc, the documentation tool provided in the Java Developer’s
Kit. Many Java programs are documented in this format, which annotates classes and methods
with short textual descriptions. Javadoc is browsable as a hypertext to navigate the class hierarchy
and look up class definitions.

A proposed comparison is to ask a subject to browse Javadoc or use DR. JONES to explore
two unfamiliar programs with similar designs. After the exploration session, the quality of the



mental models learned will be assessed. Also, the subject will be asked to subjectively describe
her browsing strategies and experiences with the two tools.

5.3 Scaling up

The real need for a program comprehension tool is when the programmer is faced with a program
so large it cannot be understood by browsing a few files. Programs with thousands or millions of
lines of code, developed over many years by many programmers, are the real test cases for DR.
JONES.

We do not expect DR. JONES to handle these cases as well as the simple calendar application.
But they will still be worth trying, to find the breakdown points of the presentation metaphors,
recognition system, and browsing interface. The hope is that the underlying mode of interaction,
multiscale source browsing, will remain usable, but require additional knowledge to recognize
the greater varieties of abstractions in programs of significant size and complexity.

Fortunately, the open source software movement has made available many examples of real,
production code bases of varying size and design complexity. These examples will be valuable
while incrementally improving the quality of design pattern recognition, as well as providing
test cases for usability comparisons with Javadoc. Also, a useful exercise would be to analyze a
production program whose developers are available in person to critique the views DR. JONES

provides.

6 Conclusion

The thesis of this proposal is that there are a small number of tightly coupled program views that,
taken together, can provide a programmer with an effective mental model of an unfamiliar pro-
gram. Each of the views contains information programmers usually seek by browsing source code
or reading good documentation. By presenting this information in diagrams, program compre-
hension can be transformed from a difficult, cognitive task into an easier, perceptual one (Larkin
and Simon, 1987).

To support this thesis the research will study the strategies programmers use when they com-
prehend programs, to determine the kinds of information they extract and the design patterns
they recognize. These findings will motivate how the program is viewed through DR. JONES, a
multiscale program browser. DR. JONES acts as a software archaeologist’s magic lens, making ex-
plicit patterns and relationships in the program that usually require much more effort to deduce.

6.1 Inspirations and Related Work

Research to develop of tools for program understanding and comprehension has been underway
for some time. An early prototype of this work was the Programmer’s Apprentice (Rich and
Waters, 1989), an integrated, knowledge-based software engineering environment. It combined
program understanding through design pattern recognition with intelligent assistance for design,
optimization, and debugging. DR. JONES borrows the idea of design pattern recognition to seek
abstractions above the class and method level.

The use of visualization for the explanation of complex devices and systems also has a rich
history (Tufte, 1997). Figure 4 is an example of how a complex sequence of events can be commu-
nicated by illustrating significant interactions and suppressing irrelevant detail.



Figure 4: An example of a diagrammatic illustration of a complex sequence of events, from (Tufte,
1997).

Software visualization has been particularly successful for illustrating the behavior of algo-
rithms (Stasko et al., 1998). A visualization is usually designed for a particular family of algorithms
(like sorting), limiting its usefulness for visualizing programs that use many types of algorithms.
Also, the focus here is on program visualization at an architectural level, so that a method’s func-
tion is much more relevant than its implementation. Software diagramming languages, like Uni-
versal Modeling Language (Booch et al., 2001), are a related family of software visualizations and
a source of ideas.

Comprehension tools that are cognitively motivated are most comparable to this proposal,
such as DynaSee (Zayour and Lethbridge, 2000) and SHriMP (Storey et al., 1997). To motivate
DynaSee, the authors performed a cognitive analysis of program simulation in source code in
terms of its load on working memory. DynaSee is designed to lighten this load by allowing the
programmer to browse the execution trace as a collapsible tree. SHriMP, based on similar ideas,
is a software structure browser that incorporates fisheye views to control the complexity of the
display. DR. JONES will extend these approaches to develop a family of tightly coupled views at
multiple levels of detail.

6.2 Surprises

At least two major kinds of surprises could alter the progress of this research. First, the exploratory
user studies could uncover an unexpected variety of comprehension strategies; individual differ-
ences may dominate, and no discernible patterns would emerge. This will limit the influence of
the user studies on the design of DR. JONES. If this is the case, an alternative is to borrow diagrams
from UML and other diagramming languages. These have been proven in practice to be useful for
program documentation, and motivate other work that seeks to provide a natural environment
for software design by sketching (Hammond, 2001).

The second surprise is unexpected variation in the design and syntax of programs. Software
is big and messy, and more often evolves through an accretion of features and workarounds than
by planned design. This fact may limit the effectiveness of top-down abstraction based on the
recognition of common design patterns. A bottom-up approach such as hierarchical clustering
may turn out to be more reliable for the recognition of some kinds of abstractions.



An underlying assumption is that a method forms the atomic unit of functionality for compre-
hension. This assumption is violated when a programmer chooses poor abstractions and combines
several loosely coupled functions into a single method. The identification of separable pieces of
functionality within a method would help, but this is a difficult problem and beyond the scope of
this proposal. Any program comprehension tool is ultimately limited by the design quality of the
programs it examines – untangling spaghetti code remains, for now, the province of expert human
programmers.

6.3 Prospects

Program comprehension is a critical part of software maintenance, and the day-to-day life of pro-
grammers would be much more pleasant if they had right tools to assist them at this task. In an
ideal world, instead of expending valuable mental energy grepping through and poring over
thousands of lines of code, the programmer will be able to interact with and visually explore the
program, literally seeing how it works. If comprehension were removed as a bottleneck to soft-
ware maintenance, the reality of software evolution could be altered: instead of reimplementing
a system from scratch, as is often done, designers will be encouraged to adapt and reuse existing
source code, which hopefully has most of its bugs worked out already.

While wandering around the hallways of the Lab, I’ve been jealous of the chip plots that VLSI
designers post of their projects. A lot of information is immediately available, such as the location
of the register file and cache, even without knowing much about the function of the chip (or, in
my case, VLSI design). Although the comparison is not quite fair – chips, unlike software, never
change after going to the foundry – a dream for DR. JONES is that it makes software structure and
behavior just as accessible through its magic lens.



7 Appendix: Proposed Schedule of Research

Milestone/Deliverable Tentative Date
User Studies: 10 Sessions July, 2001
User Studies: 20 Sessions August, 2001
User Studies: 30 Sessions September, 2001
DR. JONES UI Low Fidelity Prototype October, 2001
DR. JONES Infrastructure November, 2001
DR. JONES UI Working Prototype December, 2001
DR. JONES Small Programs Evaluation January, 2002
DR. JONES Large Programs Evaluation February, 2002
DR. JONES vs. Javadoc Evaluations (10 Sessions) March, 2002
Thesis Document Draft April, 2002
Thesis Defense May, 2002

Note: A possible collaboration with Prof. Daniel Jackson, who teaches 6.170 in the Spring 2002
term, to provide an educational testbed for DR. JONES is not included.



References

Booch, G. et al. (2001). Universal Modeling Language specification version 1.3. Published by the
Object Modeling Group.

Eick, S. G. (1998). Maintenance of large systems. In Stasko et al. (1998), chapter 21.

Erdos, K. and Sneed, H. M. (June 1998). Partial comprehension of complex programs. In 6th
International Workshop on Program Comprehension (WPC’98), pages 98–105.

Foltz, M. A., Neviett, W. T., and Xiong, R. (2000). Architecting a group memory with Plexus.
Manuscript.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley,
Reading, Massachusetts.

Hammond, T. (April 2001). Interpreting sketching in software development. Manuscript. MIT
Artificial Intelligence Lab.

Joy, B., Steele, G., Gosling, J., and Bracha, G. (1998). The Java Language Specification. Second edition.
Addison-Wesley.

Knuth, D. E. (1991). Literate Programming. Center for the Study of Language and Information,
Stanford University. CSLI Lecture Notes Number 27.

Kramer, D. (1999). API documentation from source code comments: A case study of Javadoc. In
Proceedings of the Seventeenth Annual Conference on Computer Documentation, pages 147–153.

Larkin, J. H. and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science, 11(1):65–99.

Pauw, W. D., Kimmelman, D., and Vlissides, J. (1998). Visualizing object-oriented software execu-
tion. In Stasko et al. (1998), chapter 22, pages 329–346.

Raghavan, A. and Stahovich, T. F. (1998). Computing design rationales by interpreting simula-
tions. In Proceedings of Tenth International ASME Conference on Design Theory and Methodology.

Rich, C. and Waters, R. C. (January 1989). Intelligent assistance for program recognition, design,
and debugging. Technical Report MIT AI Memo 1100, MIT Artificial Intelligence Laboratory,
Cambridge, MA.

Sayyad-Shirabad, J., Lethbridge, T., and Lyon, S. (May 1997). A little knowledge can go a long
way toward program understanding. In Fifth International Workshop on Program Comprehension,
pages 111–117. Institute for Electrical and Electronics Engineers.

Stasko, J., Domingue, J., Brown, M. H., and Price, B. A., editors (1998). Software Visualization:
Programming as a Multimedia Experience. The MIT Press, Cambridge, MA.

Storey, M.-A. D., Fracchia, F. D., and Muller, H. A. (May 1997). Cognitive design elements to
support the construction of a mental model during software visualization. In Proceedings of the
5th International Workshop on Program Comprehension, pages 17–28. Dearborn, Michigan.



Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics
Press, Cheshire, Connecticut.

Zayour, I. and Lethbridge, T. C. (2000). A cognitive and user centric based approach for reverse
engineering tool design. In Proceedings of CASCON 2000.


	Sarah Singleton's Expedition
	The Thesis
	Proposed Contributions
	Artificial Intelligence
	Software Engineering
	Design Rationale Capture and Use

	Back to Sarah Singleton
	Outline

	Source Browsing Breakdowns
	The Trouble With Source Code
	Overcoming Browsing Breakdowns

	Comprehension Strategies and Mental Models
	Exploratory User Studies
	Preliminary Results

	From Strategies to Models
	From Mental Models to Views
	Variations in Mental Models
	Variations According to the Task
	Variations According to the Application

	The User's Model Versus the Programmer's Model

	Dr. Jones
	Initial Steps: Structural Browsing
	Pattern Recognition
	Visualizing Behavior: ``Software Jiggling''
	The Archaeologist's Logbook
	Finishing Up

	Assessment
	Explaining Simple Programs
	Comparison With Javadoc
	Scaling up

	Conclusion
	Inspirations and Related Work
	Surprises
	Prospects

	Appendix: Proposed Schedule of Research

