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Abstract. If gesture communicates semantics, as argued by many psychologists,
then it should be relevant to bridging the gap between syntax and semantics in
natural language processing. One benchmark problem for computational seman-
tics iscoreference resolution: determining whether two noun phrases refer to the
same semantic entity. Focusing on coreference allows us to conduct a quantita-
tive analysis of the relationship between gesture and semantics, without having to
explicitly formalize semantics through an ontology. We introduce a new, small-
scale video corpus of spontaneous spoken-language dialogues, from which we
have used computer vision to automatically derive a set of gesture features. The
relevance of these features to coreference resolution is then discussed. An anal-
ysis of the timing of these features also enables us to present new findings on
gesture-speech synchronization.

1 Introduction

Although the natural-language processing community has traditionally focused mainly
on text, the actual usage of natural language between people is primarily oral and face-
to-face. Extension of robust NLP to face-to-face communication offers the potential for
breakthrough applications in domains such as meetings, lectures, and presentations. We
believe that in face-to-face discourse, it is important to consider the possibility that non-
verbal communication may offer information that is crucial to language understanding.
However, due to the long-standing emphasis on text datasets, there has been little work
on non-textual features.

In this paper, we investigate the relationship between gesture and semantics. We use
machine vision to extract hand positions from a corpus of sixteen videos. We present a
set of features that are derived from these hand positions, and use statistical methods to
characterize the relationship between the gesture features and the linguistic semantics.
Semantics is captured concretely in the context ofcoreference, which occurs when two
noun phrases refer to the same entity. If gesture features can predict whether two noun
phrases corefer, then they can contribute to the semantic analysis of speech.

2 Corpus

In this section we describe the development of a small audio/video corpus used in our
experiments. This work is necessarily preliminary, and the size of the corpus is small
compared to the corpora used more frequently in the field. It is hoped that interest in
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multimodal natural language processing will increase, leading to the development of
better and broader corpora.1

2.1 Procedure

Thirty college students and staff, aged 18-32, joined the study by responding to posters
on our university campus. A subset of nine pairs of participants was selected on the basis
of recording quality, and their speech was transcribed was transcribed and annotated.
Two videos from each of the nine pairs were included, although technical problems
forced us to exclude two videos; this yielded 16 annotated documents, each between
two and three minutes in duration.

McNeill and others have long advocated studying dialogues in which the speaker
and listener already know each other [3]. This eliminates a known confound in which
the speaker and listener increase the rate of gestures as they become acquainted over the
course of the experiment. For this reason, we recruited participants to sign up in pairs;
78% of participants described themselves as “close friends” or spouses of their partner;
20% as “friends”, and 3% as “acquaintances”.

One participant was randomly selected to be the “speaker” and the other to be the
“listener.” Prior to each discussion, the speaker either privately viewed a video of a me-
chanical device, or left the room and examined an actual physical object. The speaker’s
role was to explain the behavior of the device to the listener. To this end, the speaker
was provided with either a whiteboard marker with which to create a sketch, a pre-
printed diagram of the device, or no visual aids at all. In this paper, we will consider
only data from the condition with the pre-printed visual aid. The interpretation of ges-
tures in this condition is thought to be more straightforward; many, if not most of the
gestures involve pointing at locations on the diagram. While the (presumably) more
challenging problem of understanding gesture without visual aids is interesting future
work, printed or projected diagrams are common in business presentations and lectures,
so this restriction does not seem to be overly limiting to the applicability of our work.

The listener’s role was to understand the speaker’s explanations well enough to take
a quiz given later. The listener was allowed to ask questions of the speaker; however the
listener’s speech has not yet been transcribed, and is not considered in this study.

The speaker was limited to two minutes to view the video or object and three min-
utes to explain it; the majority of speakers used all of the time allotted. This suggests
that we could have obtained more natural data by not limiting the explanation time.
However, we found in pilot studies that this led to problematic ordering effects, where
participants devoted a long time to the early conditions, and then rushed through later
conditions. With these time constraints, the total running time of the experiment was
usually around 45 minutes.

2.2 Speech and Vision Analysis

Both participants were recorded using headset microphones. A homebrew Java system
controlled the synchronization of the both the microphones and video cameras. Speech

1 Two such possibilities are the VACE [1] and AMI [2] corpora, which are both currently under
development.



was transcribed manually, and audio was hand-segmented into well-separated chunks
with duration not longer than twenty seconds. The chunks were then force-aligned by
the SPHINX-II speech recognition system [4].

Video recording was performed using standard digital camcorders. Participants were
given different colored gloves to facilitate hand tracking. Despite the use of gloves, a
post-study questionnaire indicated that only one of the thirty participants guessed that
the study was related to gesture. The study was deliberately designed so that partici-
pants had very little free time to think; when not actually conducting the dialogue, the
speaker was busy viewing the next mechanical system, and the participant was busy be-
ing tested on the previous conversation. We also presented consent forms immediately
after the gloves, which may have diverted attention from the gloves’ purpose.

An articulated upper-body tracker was used to model the position of the speaker’s
torso, arms, and hands. By building a complete upper-body tracker, rather than simply
tracking the individual hands, we were able to model occlusion directly. Search across
configurations of the tracker was performed using an annealed particle filter, imple-
mented in OpenCV.2 Essentially, the system performed a randomized beam search to
simultaneously maximize coverage of the foreground area and the expected color of the
gloves, while respecting physiological constraints and temporal continuity. The tracker
was based largely on the work of [5]; the main differences were that Deutscher et al.
did not use color cues such as gloves, but had access to multiple cameras to facilitate
3D tracking. We used only a single monocular camera and a 2.5D model (with just one
degree of freedom in the depth plane). From inspection, the lack of depth information
was the cause of many of our system’s errors; bending of the arm joints in the depth
dimension caused the arm length to appear to change in ways that were confusing to our
model. Nonetheless, we estimate that both hands were tracked accurately and smoothly
over 90% of the time. It is difficult to assess the tracker performance more precisely, as
that would require ground truth data in which the actual hand positions were annotated
manually at each time step.

3 Annotation

Coreference annotation is a two-step process [6]. First, all noun phrases (NPs) that
may participate in coreference relations are selected; these are sometimes called “mark-
ables.” All third-person noun phrases were included as markables; in addition, nested
markables were annotated (e.g., “[one of [these walls]]”3). First and second person NPs
were excluded as markables, as they were thought to be irrelevant to the issue of un-
derstanding the explanatory narratives about physical devices; furthermore, it seemed
unlikely that gesture could play much of a role in disambiguating coreferences among
such entities. It would be easy to automatically separate out these NPs in most cases.
Manual annotation also disambiguated different senses of words like “that,” which can
be a referential pronoun (e.g. “that is rotating”) or a relative pronoun “the one that ro-
tates.” The expletives “there” and “it” are also not included as markables (e.g., “There’s
no way out of here”, “it’s hard to predict”).

2 http://www.intel.com/technology/computing/opencv/
3 In this notation, noun phrases are set off by brackets.



The corpus consists of spontaneous speech, so disfluencies abound. Repeated word
disfluencies were automatically eliminated when the repetitions were adjacent, but other
disfluencies were left uncorrected; rather than performing coreference resolution on an
error-free text, we include the markables that occur inside disfluencies without prej-
udice. A frequent type of disfluency involves restatement of a noun phrase, e.g., “so
this pushes [these] [all these things] up.” This is asubstitutiondisfluency, where “all
these things” substitutes for “these.” However, both are treated as markables, with a
coreference relation between them, since they refer to the same set of objects.

A total of 1141 markables were found in the corpus, an average of 71 per docu-
ment. After the markables were annotated, the second step is to specify the coreference
relations between them. As with the selection of markables, coreference annotation was
performed by the first author, following the MUC-7 task definition [6]. A coreference
relation was annotated whenever two noun phrases were judged to have an identical
reference. 74.5% of markables participated in coreference relations, and there were a
total of 474 entities, yielding a markable-to-entity ratio of 2.4.

4 Features

To assess the relationship between gestures and coreference, we computed a set of fea-
tures describing the position and motion of the tracked hands. Two of the these features
arecomparative, in that they can be used to measure the similarity of gestures during
different points in time. These can be applied directly to coreference, comparing the
gestures observed during the two candidate noun phrases. Five other features are not
comparative, meaning that they describe only a single gesture. These features can be
used to assess the likelihood that an individual noun phrase relates toany previously
defined entity, or the likelihood that the comparative features will be applicable to de-
termining coreference.

Some of the features invoke the idea of “focus”: which hand, if any, is gesturing
during the utterance of the noun phrase. There are four logical possibilities: both, left,
right, or neither. For the moment we ignore bimanual gestures, which were not frequent
in our data. The determination of which hand is in focus is governed by the following
heuristic: select the hand farthest from the body in the x-dimension, as long as the hand
is not occluded and its y-position is not below the midsection of the speaker’s body. If
neither hand meets these criteria, than no hand is said to be in focus.

In the notation that follows,xstartj ,L refers to the x-position of the left hand at the
start of the noun phrasej. For the non-comparative features, there is only one noun
phrase, and so no need to index them.ystart,F refers to the y-position of whichever
hand is in focus at the start of the noun phrase.

4.1 Comparative Features

– FOCUS DISTANCE: The distance between the positions of the in focus hand during the
two candidate noun phrases. The focus distance is undefined if there is no focus hand during
either candidate noun phrase. FOCUS DISTANCE is given by√

(xmidpointj ,Fj − xmidpointi,Fi)
2 + (ymidpointj ,Fj − ymidpointi,Fi)

2. (1)



– WHICH HAND : Takes three values: “SAME,” if the same hand is in focus during both
candidate NPs; “DIFFERENT,” if a different hand is in focus; “MISSING,” if no focus hand
is found during at least one of the NPs.

4.2 Non-comparative Features

– FOCUS SPEED: The total displacement of the in-focus hand, divided by the duration of
the word. Focus speed is undefined if there is no focus hand at either the beginning or end of
the word, or if the focus hand is different at the end of the word from the focus hand at the
beginning. FOCUS SPEED is given by√

(xend,F − xstart,F )2 + (yend,F − ystart,F )2/duration. (2)

– JITTER : Jitter measures the variance of the hand position over the course of the NP. Since
this feature does not require the determination of the focus hand, it is never undefined. How-
ever, contributions at instants when a hand is occluded are not counted in the sum. We found
this feature to be more informative when smoothed by a Gaussian kernel. JITTER is given
by

end∑
t≥start

√
(xt,L − x̄L)2 + (xt,R − x̄R)2 + (yt,L − ȳL)2 + (yt,R − ȳR)2

duration
. (3)

– PURPOSE: This feature captures how much of the overall motion (the JITTER) is explained
by purposeful motion between the start and end points of the gesture. PURPOSE is simply
FOCUS SPEED/JITTER, and is undefined whenever FOCUS SPEED is undefined. Note
that as currently defined, this feature will give a low score to any periodic motion, even large
circles.

– SYNCHRONIZATION : Synchronization measures the degree to which the two hands are
moving on the same trajectory. Like JITTER, this feature does not use focus information,
and is therefore never undefined. However, contributions at instants when a hand is occluded
are not counted in the sum.atan2 is the full circle arctan function, which returns values in
the range{−π, π}.

θt,h = atan2(yt,h − yt−1,h, xt,h − xt−1,h) (4)

syncht = cos(θt,L − θt,R) (5)

synch=

end∑
t>start

syncht
duration

(6)

– SCALED SYNCHRONIZATION : Scaled synchronization scales the synchronization score
at each time step by average hand speed at that time step. Thus, large synchronized move-
ments are weighed more heavily than small ones. The velocitiesvt,h – referring to the ve-
locity of handh at timet – are smoothed using a Gaussian kernel.

vt,h =
√

(xt,h − xt−1,h)2 + (yt,h − yt−1,h)2 (7)

scaledsynch=

∑end

t>start
(vt,L + vt,R)syncht

2 ∗ duration
(8)



5 Feature Relevance

Both of the comparative features were predictive of coreference. FOCUS DISTANCE,
which measures the distance between the hand positions during the two noun phrases,
varied significantly depending on whether the noun phrases coreferred (see Table 1).
The average noun phrase has a FOCUS DISTANCE of 48.4 pixels to NPs with which it
corefers (σ = 32.4), versus a distance of 74.8 to NPs that do not corefer (σ = 27.1); this
difference is statistically significant (p < .01, dof = 734). We expected to find larger
differences for pronouns or NPs starting with the word “this,” expecting gesture to play
a larger role is disambiguating such NPs. As shown in the table, this does not appear
to be the case; there was no significant increase in the discriminability of the FOCUS
DISTANCE feature for such linguistic phenomena. However, FOCUS DISTANCE does
appear to play less of a discriminative role for definite NPs (e.g., “the ball”) than for
non-definite NPs (t = 3.23, dof = 183, p < .01). This suggests that the definite article
is not used as frequently in combination with gestures that communicate meaning by
hand location, and that computer systems may benefit by attending more to gesture
during non-definite NPs.

coreferringnot coreferringdifference

all 48.4 74.8 26.4
pronouns 50.3 76.5 26.2
non-pronouns 46.5 73.5 27.0
definite NPs 50.8 70.0 19.2
non-definite NPs 48.0 75.7 27.7
“this” 44.5 71.8 27.3
non-”this” 50.2 76.1 25.9

Table 1.Average values for the FOCUS DISTANCE feature (Equation 1), computed for various
linguistic phenomena.

The FOCUS DISTANCE feature is based on a Euclidean distance metric, but this
need not be the case; it is possible that coreference is more sensitive to movement in
either the y- or x- dimension. Figure 1 helps us to explore this phenomenon: it is a
contour plot comparing relative hand position (indicated by the position on the graph)
to the likelihood of coreference (indicated by brightness). At (0,0), the hand positions
during the candidate NPs are identical; at (0,19.6), the x-coordinates are identical but
the y-coordinates of the focus hand at the time of the anaphoric noun phrase is 19.6
units higher than at the time of the antecedent NP. In the graph, the x- and y-axes
are logarithmic, with the detail decreasing exponentially as one moves away from the
center.

The graph shows that the likelihood of coreference is greatest when the hand po-
sitions are identical (at the origin), and drops off nearly monotonically as one moves
away from the center. However, there are some distortions that may be important. The
drop-off in coreference likelihood appears to be less rapid in the y-dimension, suggest-
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Fig. 1.A contour plot of coreference likelihood based on the relative position of the focus hands.
Both axes are logarithmic, with the greatest detail at the center. The level of brightness indicates
the likelihood of coreference, quantified in the color bar on the right.

ing the accuracy in the y-coordinate is less important than in the x-coordinate. This may
be explained by the fact that the figures we used were taller than they were wide – the
exact dimensions were 22 by 17 inches – or it may be a more general phenomenon. The
decrease in coreference likelihood also appears to be less rapid as one moves diagonally
from upper-left to lower-right. This may be an artifact of the fact that speakers more of-
ten stood to the left of the diagram, from the camera’s perspective. From this position,
it is easier to move the hand along this diagonal than from the upper-right to lower-left
corners.

The choice of gesturing hand was also found to be related to coreference. As shown
in Table 2, speakers were more likely to use the same hand in both gestures if the asso-
ciated noun phrases were coreferent. They were less likely to use different hands, and
they were more likely to gesture overall. These differences were found to be statistically
significant (p < .01, χ2 = 57.3, dof = 2). Table 2 also shows how the relationship be-
tween hand choice and coreference varied according to the type of noun phrase. Hand
choice was a significant feature for all types of NPs, excet those beginning with the
word “this” (p = .12, χ2 = 4.28, dof = 2).

The overall rate of detected gestures varied across linguistic phenomena, shown
in column 4. The fewest gestures occurring during pronouns, and the most occurring
during NPs beginning with the word “this.” It is somewhat unsettling that the greatest
proportion of gestures occurred during such NPs, and yet our comparative features were



not better at predicting coreference – in fact, the HAND CHOICE feature was worse
for these NPs than overall.

samedifferent no gesture
overall

coreferring 59.9 19.9 20.2
not coreferring52.8 22.2 25.1
all 53.2 22.0 24.8

anaphor is a pronoun
coreferring 58.9 18.6 22.6
not coreferring50.5 21.0 28.5
all 51.2 20.8 28.0

anaphor is definite NP
coreferring 57.8 25.6 16.6
not coreferring54.7 22.2 23.1
all 54.9 22.5 22.7

anaphor begins with “this”
coreferring 65.6 21.8 12.6
not coreferring61.6 23.0 15.4
all 61.8 22.9 15.3

Table 2.Hand choice and coreference. All figures are percentages.

5.1 Non-comparative Features

Non-comparative features cannot directly measure whether two noun phrases are likely
to corefer, as they can be applied only to a single instant in time. However, they can be
used for at least two purposes: to determine whether a given noun phrase is likely to
haveanycoreferent NPs, and to assess whether the comparative features will be useful.
In other words, non-comparative features may tell us whether gesture is worth attending
to.

The first question – the relationship between non-comparative features and anaphoric-
ity – is addressed in Table 3. For a given noun phrase, its “children” are subsequent NPs
that corefer to it; its “parents” are preceding NPs to which it corefers. Columns two and
three list the mean feature values, conditioned on whether the NP has children. Columns
five and six are conditioned on whether the NP has parents.

As indicated by the table, the FOCUS SPEED and PURPOSE features predict the
presence of “children” NPs when they take on low values. Both features attempt to
quantify whether the hand is being held in position during the associated NP, or if it
is in the process of moving to another location. The presence of a hold during a noun
phrase seems to predict that future NPs will refer back to the present noun phrase;
perhaps speakers are more likely to produce gestural holds when describing concepts
that they know are important.



feature children no children p parents no parents p
FOCUS SPEED .0553± .0056 .0688± .010 .05 .0634± .0068 .0557± .0079
JITTER 1.37 ± .066 1.36± .079 1.39± .067 1.34± .079
PURPOSE .0561± .0066 .0866± .020 .01 .0656± .0093 .0705± .017
SYNCHRONIZATION .0273± .043 .0515± .049 .0281± .046 .0504± .045
SCALED SYNCH .095± .096 .085± .12 .0969± .11 .0826± .10

Table 3.Non-comparative features, with 95% confidence intervals.

In contrast, none of the features were capable of predicting whether a noun phrase
had parents – previously uttered NPs to which it refers. This is somewhat disappointing,
as we had hoped to find gesture cues indicating whether an entity was being referred to
for the first time. As always, it is possible that this information is carried in gesture, and
our feature set is simply insufficient to capture it.

Non-comparative features as meta-featuresFinally, we consider the possibility that
non-comparative features can serve as meta-features, telling us when to consider the
comparative features. If so, we would expect to observe a non-zero correlation between
useful meta-features and the discriminability of the comparative features. That is, the
meta feature is helpful if for some values, it can alert us that the comparative feature is
likely to be highly discriminable.

For a given noun phraseNPj , the discriminability of the FOCUS DISTANCE fea-
ture can be measured by subtracting the average FOCUS DISTANCE to all coreferring
noun phrasesNPi from the average FOCUS DISTANCE to all non-coreferring noun
phrases:

cr(NPj) = Set of all noun phrases coreferent withNPj , not includingNPj itself.

cr(NPj) = Complement ofcr(NPj), not includingNPj itself.

FD(NPj , NPi) = FOCUS DISTANCE betweenNPj andNPi, as defined in Equation 1

d(NPj) =
1

|cr(NPj)|
∑

cr(NPj)

FD(NPj , NPi)−
1

|cr(NPj)|
∑

cr(NPj)

FD(NPj , NPi) (9)

For eachNPj , we can measure the correlation of the non-comparative features at
NPj with the discriminabilityd(NPj), to see whether the non-comparative features are
indeed predictive of the discriminability of the FOCUS DISTANCE feature. The results
are shown in Table 4. Significance values are computed using the Fisher transform.

Table 4 shows that low FOCUS SPEED and PURPOSE are indicative of a possibly
useful gesture, which is expected, since they are indicative of a gestural hold. Addition-
ally, the x-distance from the center of the body is also predictive of gesture discrim-
inability. This is likely reflective of the fact that useful gestures typically refer to the
diagram, and the speaker will usually be mindful not to obscure the diagram with her
body. The last two lines of the table show results for linear and interaction regression



feature r significance(dof = 377)
FOCUS SPEED -.169 p < .01
JITTER .0261
PURPOSE -.1671 p < .01
SYNCHRONIZATION -.0394
SCALED SYNCH -.0459
Y-distance from bottom .0317
X-distance from body center .215 p < .01

Regression, linear model .288 p < .01
Regression, interaction model.420 p < .01

Table 4.Non-comparative feature correlations with FOCUS DISTANCE discriminability

models, suggesting that a classifier built using these features could be strongly predic-
tive of whether the current gesture is informative. This would suggest a meta-learning
system that could tell us when to pay attention to gesture and when to ignore it.

6 Gesture-Speech Synchronization

Given that gesture carries semantic content associated with speech, it is logical to ask
how the speech and gesture are synchronized. Does the more informative part of gesture
typically precede speech, follow it, or synchronize with it precisely? This is relevant
from both an engineering and scientific perspective. To build systems that use gesture
features, it is important to know the time window over which those features should
be computed. From a psycholinguistic perspective, the synchronization of gesture and
speech is thought to reveal important clues about how gesture and speech are produced
and represented in the mind [7, 8].

We compared the effectiveness of the “FOCUS DISTANCE” feature at assess-
ing coreference identity, using discriminability as defined in Equation 9, evaluated at
varying temporal offsets with respect to the start, midpoint, and end of the associated
noun phrases. The results are shown in Figure 2. The optimal discriminability is found
108 milliseconds after the midpoint of the associated noun phrase. With respect to the
speech onset, optimal discriminability is found 189 milliseconds after the speech onset.
With respect to the end of the lexical affiliate, the optimal discriminability is found 81
milliseconds after the end point; while it is somewhat surprising to see the optimal dis-
criminability after the end of the word, this may be the result of noise, as this graph is
less sharply peaked than the other two.

Some of the existing psychology literature suggests that gesture strokes typically
precedethe associated speech [7, 8]. Our data may appear to conflict with these earlier
results, but we argue that in fact they do not. The existing literature typically mea-
sures synchronization with respect to thebeginningof the gesture and the beginning of
speech. Note that the FOCUS DISTANCE feature only captures the semantics ofdeictic
gestures, which McNeill defines as gestures that communicate meaning by hand posi-
tion [3]. In particular, we believe that our results capture the beginning of the post-stroke
“hold” phase of the gesture: exactly the moment at which the movement of the gesture
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Fig. 2. Gesture-speech synchronization data. The y-axis is the discriminability (Equation 9), and
the x-axis is the offset in seconds. Part (d) shows a wider window than the other three plots. Parts
(b) and (d) show the discriminability when the offset is computed from the speech midpoint. In
parts (a) and (c), the offset is computed from the start and end points respectively.

ends, and the hand rests at a semantically meaningful position in space. This analysis
is supported by the finding that the FOCUS DISTANCE discriminability is negatively
correlated with hand movement speed (see Table 4). At the onset of gesture motion, the
hand is not yet at a semantically relevant location in space, and so the discriminability
of the FOCUS DISTANCE feature cannot capture when motion begins. In future work,
we hope to consider whether segmentation of hand motion into movement phases could
be automated, facilitating this analysis.

7 Related Work

The psychology literature contains many close analyses of dialogue that attempt to iden-
tify the semantic contribution of gesture (e.g., [3, 9]). This work has been instrumental
in documenting the ways in which gesture and speech interact, identifying features of
gesture (termed “catchments”), and showing how they relate to semantic phenomena.
However, much of this analysis has beenpost facto, allowing psychologists to bring to
bear human-level common-sense understanding to the interpretation of the gestures in
dialogues. In contrast, we focus our analysis on coreference – rather than asking “what
does this gesturemean?”, we ask the simpler, yes/no question, “do these two gestures
refer to the same thing?” Thus, we are able to systematize our treatment of semantics
without having to create an ontology for the semantics of the domain. This, in combi-
nation with automatic extraction of gesture features through computer vision, clears the
way for apredictiveanalysis without human intervention. We believe such an analysis
provides a useful complement to the existing work that we have cited.

Another relevant area of research is in gesture generation, which has developed and
exploited rich models of the relationships between gesture and semantics (e.g., [10]).



However, there is an important difference between generation and recognition. Humans
are capable of perhaps an infinite variety of gestural metaphors, but gesture genera-
tion need only model a limited subset of these metaphors to produce realistic gestures.
To understand the gestures that occur in unconstrained human communication, a more
complete understanding of gesture may be necessary.

8 Conclusion

This paper introduces a new computational methodology for addressing the relationship
between gesture and semantics, avoiding time-consuming and difficult gesture annota-
tion. We have found several interesting connections between gesture features and coref-
erence, using a new corpus of dialogues involving diagrams of mechanical devices. In
our data, the position of gestural holds appears to be the most important gesture feature,
and other gesture features can help to determine when holds are occurring. In addition,
an analysis of the timing of gesture/speech synchrony suggests that the most useful in-
formation for deictic gestures is located roughly 100 milliseconds after the midpoint of
the lexical affiliate.
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