
Submitted to 2002 AAAI Spring Symposium on Sketch Recognition 1

Position Statement and Overview: Sketch Recognition at MIT

Randall Davis
MIT Artificial Intelligence Laboratory

davis@ai.mit.edu

Position

The problem with software is not that it needs a good
user interface, it needs to have no user interface. Inter-
acting with software should — ideally — feel as natural,
informal, rich, and easy as working with a human as-
sistant.

One key to this lies in enabling means of interacting
with software that are similarly natural, informal, rich
and easy. We are making it possible for people involved
in design and planning tasks to sketch, gesture, and
talk about their ideas (rather than type, point, and
click), and have the computer system understand their
messy freehand sketches, their casual gestures, and the
fragmentary utterances that are part and parcel of such
interaction.

A second key lies in appropriate use each of the means
of interaction. Our work to date has made it clear, for
example, that different means are well suited to com-
municating different things: Geometry is best sketched,
behavior and rationale are best described in words and
gestures.

A third key lies in the claim that interaction will be
effortless only if the listener is smart: effortless interac-
tion and invisible interfaces must be knowledge-based.
If it is to make sense of informal sketches, the listener
has to understand something about the domain and
something about how freehand sketches are drawn.

This paper provides an overview of six current pieces
of work at the MIT AI Lab on the sketch recognition
part of this overall goal.

Projects

Early Processing

The focus in this part of our work is on interpreting the
pixels produced by the user’s strokes, producing low
level geometric descriptions such as lines, ovals, rect-
angles, arbitrary polylines, curves and their combina-
tions. This provides a compact representation and sets
the stage for more abstract interpretation.

Our initial domain – mechanical engineering design
— presents the interesting (and common) difficulty that

Copyright c© 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

there is no fixed set of shapes to be recognized. While
there are a number of traditional symbols with some-
what predictable geometries (e.g., symbols for springs,
pin joints, etc.), the system must also be able to
deal with bodies of arbitrary shape that include both
straight lines and curves. As consequence, accurate
early processing of the basic geometry—finding corners,
fitting both lines and curves—becomes particularly im-
portant.

Stroke processing consists of detecting vertices at the
endpoints of linear segments of the stroke, then detect-
ing and characterizing curved segments of the stroke.

Our approach takes advantage of the interactive na-
ture of sketching, combining information from both
stroke direction and speed data. We locate vertices by
looking for points along the stroke that are minima of
speed (the pen slows at corners) and/or maxima of the
absolute value of curvature. To deal with the many
false positives introduced by noise in the data, we rely
on a variety of filtering techniques, including the use of
a scale-space representation (for details, see [Sezgin01]).

An examples of the capability of our approach is
shown below (input at left, parsed figure at right; dots
indicate line endpoints, crosses indicate curve segment
endpoints). Note that all of the curved segments have
been modeled as curves, rather than the piecewise linear
approximations that have been widely used previously.

Object Interpretation

One important step toward sketch understanding is re-
solving ambiguities in the sketch, determining, for ex-
ample, whether a circle is intended to indicate a wheel
or a pin joint, and doing this as the user draws, so that
it doesn’t interfere with the design process. We have
developed program that does this for freehand sketches
of simple 2-D mechanical devices. (Another submission
to this workshop describes the next generation of this

nira
Text Box
Appeared in Sketch Understanding, Papers from the 2002 AAAI Spring Symposium, pp.24-31



Submitted to 2002 AAAI Spring Symposium on Sketch Recognition 2

system that we plan to build; here we describe the ex-
isting system).

The program is interesting in part because it employs
a variety of knowledge sources to resolve ambiguity, in-
cluding knowledge of drawing style and of mechanical
engineering design, and because it “understands” the
sketch in the sense that it recognizes patterns of strokes
as depicting particular components. It illustrates that
understanding by running a simulation of the device,
giving designers a way to simulate their designs as they
sketch them.

The figure below shows a session in which the user
has drawn a simple car on a hill; the user’s drawing as
re-displayed by the program is shown in next. When
the ”Run” button is tapped, it transfers the design to
a two-dimensional mechanical simulator which shows
what will happen (at right). Despite ambiguities in

the sketch, the system is able to use context to select
the correct interpretation, allowing the user to sketch
without interruption.

Graphical Description of Behavior

The system above offers the ability to sketch structure,
i.e., individual components and their connections. But
the intended behavior of a device is not always obvious
from its structure alone. Consider the (whimsical) egg-
cracking device below, adapted from [Narayanan95].
The intent is that, as the stopper (the vertical bar near

the run button) is pulled up, the spring forces the ball
to the right, it falls onto the see-saw, allowing the wedge
to drop, cracking the egg into the frying pan. But if we
simply run the simulation, nothing interesting happens:
the stopper, responding to gravity, simply drops down
a little, as does the ball, which then stays put. We

need to be able to tell the system what is supposed to
happen.

Designers routinely do this, explaining their designs
to one another using sketches and verbal explanations
of behavior, both of which can be understood long be-
fore the device has been fully specified. But current
design tools fail almost completely to support this sort
of interaction, instead forcing designers to specify de-
tails of the design by navigating a forest of menus and
dialog boxes, rather than directly describing the behav-
iors with sketches and verbal explanations.

We have created a prototype system capable of inter-
preting multi-modal explanations for simple 2-D kine-
matic devices. The program generates a model of the
events and the causal relationships between events that
have been described via hand drawn sketches, sketched
annotations, and verbal descriptions. This provides the
user the ability to describe how the device should be-
have, and permits the system to make simple inference
about the device (e.g., that the spring must be com-
pressed if it is to force the ball to the right.

Sketching Software

Sketching is widely used in software design as a way of
brainstorming, visualizing program organization, and
understanding of requirements. We have developed a
prototype sketch recognizer for UML (unified modeling
language), a widely-used graphical notation for object-
oriented systems. Within UML we focused on class di-
agrams, first because of their central role in describ-
ing program structure, and second because many of
the symbols used in class diagrams are quite similar,
and hence, they offer an interesting challenge for sketch
recognition. (This system is the subject of another sub-
mission to the workshop.)

Describing Symbols; Learning New Ones

Our first-generation sketch recognizers relied on indi-
vidual routines hand-written for each object to be rec-
ognized. We have now developed a language for de-
scribing the appearance of symbols, detailing the vari-
ous geometric shapes and their relationships, with the
goal that recognition routines will be automatically gen-
erated from these descriptions. An and-gate provides a
simple example (Fig. 1).

As such descriptions are not trivial to write, we are
also working on the problem of learning them from an
example, using version spaces as a means of generat-
ing plausible hypotheses. To make the task as rela-
tively painless, we want the system to learn the concept
from as few examples as possible, ideally asking the user
to drawn it only once, and thereafter have the system
get the user’s reaction to subsequent examples which
it carefully generates with an eye toward reducing the
space of possible descriptions.

An Electronic Drafting Table

Finally, we are working to incorporate a pen tracking
device and a rear-projection display into an ordinary



Submitted to 2002 AAAI Spring Symposium on Sketch Recognition 3

Sketch Description

define and-gate

line L1 L2 L3;
arc A
parallel L1 L2
same-horiz-position L1 L2
connected A.p1 L3.p1
connected A.p2 L3.p2

meets L1.p2 L3;
meets L1.p2 L3
meets L2.p2 L3
semi-circle A1
orientation(A1, 180)
vertical L3

Figure 1: The description of an and-gate symbol.

drafting table, to allow designers to sketch in an envi-
ronment that feels familiar, while still benefiting from
the advantages of the electronic medium. This will be
the basis for a variety of user studies to determine how
“electronic paper” should feel.

Related Work

Previous work on freehand sketching (e.g., [Schnei-
der88], [Eggli94]) has focused on more restricted kinds
of input (e.g., spline curves). Our work on object recog-
nition handles ambiguity in a more general way than
previous work (e.g., [Do96], [Landay01]), which was
typically restricted to disambiguating a single compo-
nent. While other systems have provided behavior de-
scriptions of devices, none have permitted the sort of
graphical and gestural descriptions ours can handle.

References
[Do96] Do E, Gross M, Drawing as a Means to Design

Reasoning, AI and Design, 1996.
[Eggli94] Eggli L, Sketching with Constraints, MS

Thesis, University of Utah, 1994.
[Landay00] Long, Landay, Rowe, Michiels, Visual

Similarities of Pen Gestures, Proceedings of the CHI
2000 conference on Human factors in computing sys-
tems, 2000.

[Schneider88] Schneider P, Phoenix: An Interactive
Curve Design System Based on the Automatic Fit-
ting of Hand-Sketched Curves, MS Thesis University
of Washington, 1988.




