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Abstract

Mechanical design tools would be considerably
more useful if we could interact with them in
the way that human designers communicate design
ideas to one another, i.e., using crude sketches and
informal speech. Those crude sketches frequently
contain pen strokes of two different sorts, one type
portraying device structure, the other denoting ges-
tures, such as arrows used to indicate motion. We
report here on techniques we developed that use in-
formation from both sketch and speech to distin-
guish gesture strokes from non-gestures — a criti-
cal first step in understanding a sketch of a device.
We collected and analyzed unconstrained device
descriptions, which revealed six common types of
gestures. Guided by this knowledge, we devel-
oped a classifier that uses both sketch and speech
features to distinguish gesture strokes from non-
gestures. Experiments with our techniques indicate
that the sketch and speech modalities alone produce
equivalent classification accuracy, but combining
them produces higher accuracy.

1 Introduction
Traditional mechanical design tools hinder creativity in the
early phases of design, in part because they require over-
specification of details before they are relevant, and because
they typically have clumsy interfaces. Such tools would be
considerably more useful if we could interact with them in
the way that human designers communicate ideas to one an-
other, i.e., using crude sketches and informal speech. Both
the sketch and speech are essential to such communication;
typically one cannot be understood without the other. Inter-
preting crude sketches is challenging in part because of the
wide variety of information they contain. While many of the
pen strokes are used to portray device structure, others denote
gestures, such as arrows used to indicate motion, or circles
used to single out a component being discussed. Figure 1
shows sketches used in describing a bolt cutter and a portion
of an air pump. Consider the challenge such drawings pose
for any sketch-understanding software.

∗The authors gratefully acknowledge support for this work pro-
vided by the National Science Foundation via award No. 0729422.

Figure 1: Sketch of bolt cutter (left) and air pump (right).

A critical first step in understanding this sort of sketch is
distinguishing gesture strokes from non-gestures. This is dif-
ficult for several reasons. First, there is no standard set of ges-
ture shapes, in contrast to domains such as circuit schematics.
Second, gesture strokes and geometry strokes often have the
same shape. In Figure 1, for example, blobs of ink are used
both as pivots (in the bolt cutter) and as selection gestures.
Third, the meaning of a stroke can often be determined only
from the accompanying speech.

We report here on our efforts to identify and calibrate the
discriminatory power available from a variety of sketch and
speech features, describing the features we examined and the
contribution each made to the gesture/non-gesture classifier
we developed. We began by collecting and analyzing a large
set of unconstrained device descriptions. Analysis revealed
six common types of gestures that are used either to illus-
trate behavior or to provide spatial context for a part of the
description. Guided by this knowledge, we developed a clas-
sifier that uses features of both the sketch and speech to dis-
tinguish gesture strokes from non-gesture strokes. The sketch
features compute geometric properties of the strokes, and the
spatial and temporal relationships between them. The speech
features compute statistical properties of word groups tem-
porally aligned with the strokes. Experimental evaluation of
our techniques indicates that the sketch and speech modalities
alone produce roughly equivalent classification accuracy, but
combining them produces higher accuracy.
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2 Related Work

Our work is grounded in insights about how people use mul-
timodal explanations to describe devices. Ullman [1990]
found that engineers commonly use five different categories
of pen strokes in a sketch. His “support” and “draw” strokes
are analogous to our categories of gestures and non-gestures.
Heiser [2006] concluded that when there are numerous arrow
gestures in a sketch, students can more easily understand the
functionality of a device, illustrating the importance of ges-
tures in a design sketch.

Gestures are typically understood in the context of accom-
panying speech. Oviatt [1997] studied humans interacting
with dynamic mapping software, quantifying the likelihood
that speaking or sketching would occur first, or that they
would start simultaneously. This work was extended by Adler
[2007] for design descriptions, who found consistent time de-
lay patterns between when a pen stroke was drawn and when
the related speech was spoken. Our approach builds on this,
and assumes that speaking and sketching about the same ideas
exhibit a strong temporal proximity.

Much of the previous work in understanding descriptions
of mechanical devices has focused solely on sketching of
structure (e.g., [Bloomenthal et al., 1998; Masry et al.,
2005]). Several multimedia systems have integrated a limited
vocabulary of speech with sketching, e.g., Quickset [Cohen
et al., 1997], where spoken words are used as simple menu
commands, and MATCH [Johnston et al., 2001], which com-
bines the results at a semantic level, where our system inte-
grates speech and sketch features at a much earlier phase of
recognition. GIDeS++ [Silva and Cardoso, 2004] is a mul-
timodal system specifically designed to understand descrip-
tions of mechanical devices, but it uses pen strokes to re-
place mouse functionality rather than attempting to maintain
a natural sketching environment. ASSISTANCE [Oltmans,
2000] incorporates spoken behavioral descriptions to supple-
ment the understanding of mechanical device sketches, but
relies on limited vocabularies of speech patterns that must be
explicitly identified in advance, where our system can adapt
to new patterns via user-provided training data.

Our work is related to the work of Patel [2007] and
Bishop [2004] on separating text strokes from non-text
strokes. These works differ from ours in considering only
features from the sketch, where we examine the accompa-
nying speech. Additionally, in their work text consists of a
consistent set of letter and number glyphs, where the gestures
in our domain are often unique, and frequently have the same
shapes as pen strokes intended as non-gestures.

Our classifier builds on work in shape recognition by using
the kinds of features used by feature-based recognizers, as
for example in [Rubine, 1991; Patel et al., 2007]. Our system
relies on some of the features these systems use, but also ex-
tracts new features to address the special nature of identifying
free-form gestures.

In examining properties of the accompanying speech, our
system does not to try to understand it, but rather simply clas-
sify it as that which accompanies either a gesture or a non-
gesture. We do this with Bayesian Filters (as in [Graham,
2004]) and Markovian Filters (as in [Yerazunis, 2004]).

3 Experimental Design

We conducted a study to observe how people naturally de-
scribe devices to one another, using four devices: a door lock,
an air pump for inflating balls, a bolt cutter, and a pair of C-
clamp vise grip pliers. These devices were selected because
they are planar, include both standard machine components
and free-form shapes, and exhibit a variety of behaviors, i.e.,
both mechanical and fluidic. Participants were given five min-
utes to describe the lock and bolt cutters, and 10 minutes for
the pump and vise grips.

The participants were 16 graduate and senior undergradu-
ate mechanical engineering students at UC Riverside. Each
study session involved a pair of participants placed in sep-
arate rooms and allowed to communicate using Tablet PCs,
microphones, and headphones. The tablets provided a shared
drawing environment with a pen, highlighter, and eraser, and
the ability to select from several ink colors. The audio and
drawing were recorded with timestamps.

One participant was asked to describe a device to his or
her partner, who could ask clarifying questions. At the end of
the description, both participants were asked survey questions
about the structure and behavior of the device. To motivate ef-
fective dialog, the participants were informed that their com-
pensation would be based on the accuracy of their answers.
(All participants were in fact given the maximum compensa-
tion.) The two participants repeated this process three times,
switching roles, so that each participant described two de-
vices.

A participant’s first description often lacked detail neces-
sary to understand how the device operated. The survey ques-
tions provided useful feedback on this for both participants.
Each participant was given the opportunity to repeat their first
description after receiving feedback on the accuracy of their
survey answers. As a result, a total of 49 device descriptions
were collected.

4 Analysis of Data

We manually transcribed the speech from the study, then
used SPHINX [Huang et al., 1993] to align the text with the
recorded audio to find timestamps for the words. The words
were also labeled with the identity of the speaker. Each pen
stroke was manually labeled as either a gesture or non-gesture
stroke, where non-gestures included pen strokes representing
both device structure and hand-written text. (Our future work
will consider text as a separate class.)

We examined the sketches to identify the vocabulary of
gestures used for explaining devices. Despite the large vari-
ation in drawing styles, participants were quite consistent in
the types of gestures they used. We observed two functional
categories of gestures: “selection gestures,” used to relate a
spoken description to a spatial location in the sketch, and
“motion gestures,” used to give spatial context to how things
move or interact. Examples of many of the gesture types are
contained in Figure 1.

Selection gestures were the most frequent type. Partici-
pants selected objects by circling them, tapping the stylus on
them, highlighting them, tracing them, or pointing at them
with an arrow. Circling gestures were typically drawn with
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a circle or rectangle; participants often selected a new ink
color before making the gesture. Tapping gestures consist of
repeatedly tapping the stylus at a particular location in the
sketch, which produces a tight grouping of short bits of ink.
Participants typically did not change ink color before tapping.
The highlighting gesture consists of filling in the interior of a
part using repeated strokes with either the pen or highlighter.
This form of selection gesture was often used in regions with
many overlapping parts, where distinguishing one part from
another was difficult. When making a tracing gesture, par-
ticipants typically traced the boundary of a part using a color
that differed from that of the part itself. This form of gesture
was used both to select entire parts and to emphasize impor-
tant locations on a part. Two types of arrows were used for
selection: single-headed arrows were used to point to objects
of interest, while double-headed arrows were often used to
indicate that two pieces of the sketch were actually two views
of the same object.

Motion gestures always involved some form of arrow.
Straight arrows were used to indicate translation, curved ar-
rows were used to indicate rotation. Double headed arrows
were used to indicate that parts could move back and forth.
Clusters of arrows pointing in the same general direction were
often indicative of a fluid flow. Motion arrows were most fre-
quently drawn alongside a part rather than over the top of it,
so as to avoid obscuring the part’s geometry.

5 Classifier Design

Our classifier is a neural network with two hidden layers, with
three nodes in the first hidden layer, two in the second, and
one in the output layer. Inputs to the network are the sketch
and speech features described below; the output is the clas-
sification of the stroke as a gesture or non-gesture. We have
found that having additional context for a stroke improves
classification accuracy. In particular, we include in the in-
puts to the network the sketch and speech features of both the
previous and subsequent strokes.

We linearly scaled each feature based on its ensemble av-
erage, μ, and standard deviation, σ, with a value of μ − 3σ
mapped to 0, and a value of μ+3σ mapped to 1. This avoided
problems stemming from the vastly different magnitudes of
the raw features.

A gesture may actually be comprised of several pen
strokes. For example, an arrow may have one stroke for the
shaft and another for the head. Our classifier is intended to
identify both strokes as gesture strokes. A subsequent pro-
cess would be required to combine those strokes to form a
single object, but that is beyond the scope of this paper.

5.1 Sketch Features

Guided by our analysis of the common gesture types observed
in the user study, we developed a set of geometric features to
help distinguish gestures from non-gestures. These features
consider the properties of individual strokes, and the spatial
and temporal relationships between the strokes. The complete
set of features is listed in Table 1.

The first six features concern individual strokes. DSL is
the length of the pen stroke, and DSED is the distance be-
tween its first and last points. Taken together, these features

can indicate if a stroke forms a closed shape, potentially rep-
resenting a circling gesture. DAC is the sum of the absolute
value of the curvature (defined as the acute angle between the
two line segments formed between a point and the points on
either side) along a stroke, and provides a measure of how
much the curve “wiggles,” or deviates from a straight line.
DDC is similar to curvature, but is biased toward diagonal
drawing directions. The ink density, DID, is a measure of the
compactness of the stroke and is defined as the ratio of D2

SL
to the area of the stroke’s minimum, rotated bounding box.
DSL is squared so that the stroke length scales like area. A
large value of DID could indicate a highlighting gesture. The
highlighter feature, DHL, has a value of one if the stroke was
made with a highlighter, and zero otherwise.

The remaining 10 features describe the temporal and spa-
tial relationships between strokes. DDPS and DDNS are the
distance to the previous and next strokes, respectively. DTPS

and DTNS are the time between the stroke and the previous
and next strokes. DTCS is the time between the stroke and
the closest previously drawn stroke. These five features give
a measure of the spatial and temporal isolation of a stroke.
DET is the total elapsed time. Strokes drawn later in the
sketch may be more likely to be gestures. The underlying
color similarity, DUCS , measures the extent to which earlier
nearby strokes have the same color as the stroke. This feature
is computed by first constructing a minimum, axis-aligned
bounding box. This box is then expanded by a threshold, and
all earlier strokes are clipped, so that only the earlier ink in-
side the bounding box is retained. DUCS is defined as the
fraction of that ink that has the same color as the stroke. If a
stroke’s color is different from that of the surrounding strokes,
it may be a gesture stroke. Underlying ink density, DUID, is
the density of the ink in the bounding box used to compute
DUCS . If a stroke is drawn over a dense region, that stroke
may be a gesture.

The two Hausdorff features [Kara and Stahovich, 2005]
measure the extent to which a stroke traces underlying
strokes. For each point on the stroke, we determine the closest
distance to a point on another stroke. DMHD is the maximum
of these minimum distances. DAHD is computed similarly,
except that we compute the average minimum distance. As
in [Kara and Stahovich, 2005], we use a distance map to en-
able efficient computation of the Hausdorff features, and use
Manhattan rather than Euclidean distances.

5.2 Speech Features

To compute the speech features, it is first necessary to deter-
mine which words are associated with each pen stroke. Both
[Adler and Davis, 2007] and [Oviatt et al., 1997] suggest
there is a strong temporal correlation between speaking and
drawing. Based on that insight, we define a temporal win-
dow that extends a time ΔT before and after the stroke, and
assume that any words that fall at least partially within that
window are associated with the stroke. It is possible that a
word may be associated with more than one stroke, or that
a stroke may have no words associated with it. We chose
a value of 3 sec for ΔT (a value consistent with the results
in [Oviatt et al., 1997]), although as described in Section 7,
future work will be aimed at creating improved methods of
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Name Description

DSL Stroke length
DSED Start to end distance
DAC Total absolute curvature
DDC Diagonally-biased curvature
DID Ink density
DHL Highlighter
DDPS Distance to the previous stroke
DDNS Distance to the next stroke
DTPS Time to the previous stroke
DTNS The time to the next stroke
DTCS Time to the closest prior stroke
DET Total elapsed time
DUCS Underlying color similarity
DUID Underlying ink density
DMHD Max. Hausdorff distance to underlying ink
DAHD Ave. Hausdorff distance to underlying ink
WTPS Time to previous speaker
WWC # of word in temporal window
WBF Bayesian filter
WTBF Thesaurus Bayesian filter
WMF Markovian filter

Table 1: Features: Dx = sketch (drawing) feature; Wx =
speech (word) feature.

defining the temporal window.
The first speech feature is the time to the previous speaker,

WTPS . A change in speaker may indicate that a question
is being asked or answered. WTPS is capped at 30 sec as
the ability to make inferences decreases with longer inter-
vals. WWC is the number of words in the temporal window.
The greater the number of words, the more reliable the in-
formation extracted from the speech. The other speech fea-
tures concern the words themselves. Understanding gram-
matically correct speech is difficult enough; our speech is un-
grammatical, filled with pauses, repetitions, and disfluencies
like “um” and “ah.” Trying to perform semantic analysis on
such ungrammatical text is intractable at present. Instead, we
create features using statistical models that attempt to pre-
dict whether a set of words corresponds to a gesture or non-
gesture.

The first statistical speech feature, WBF , is based on a
Bayesian filter, a form of naı̈ve Bayesian classifier that has
had some success in spam recognition [Graham, 2004], even
though spammers actively attempt to defeat the technology.
In our domain, the designer’s speech and sketch are intended
to compliment one another, with no intentional misdirection.

To construct the Bayesian filter, it is necessary to learn the
conditional probability that a stroke is a gesture, given a spe-
cific word, wi. pi = Pr (Gesture | wi) can be computed
using Bayes’ Theorem:

pi =
Pr (wi | Gesture) · Pr (Gesture)

Pr (wi)
(1)

where Pr (wi | Gesture) is the conditional probability that
word wi will be observed, given that a gesture stroke is ob-
served; Pr (Gesture) is the prior probability of observing

a gesture; and Pr (wi) is the prior probability of observing
word wi. To estimate the values of these three quantities from
the training corpus, we first define gi and ni as the number of
times wi appeared in the training corpus with a gesture or
non-gesture, respectively. Likewise, gTot and nTot are de-
fined as the total number of words associated with gestures
and non-gestures, respectively. The conditional probability
of observing a gesture given wi can now be computed as:

pi =

(
gi

gT ot

)
·
(

gT ot

nT ot+gT ot

)
(

ni+gi

nT ot+gT ot

) =
gi

(ni + gi)
(2)

Strokes typically have multiple words in their temporal
windows. To classify a stroke, it is necessary to combine
the probabilities associated with each of those words. Us-
ing Bayes’ Theorem and assuming the words are independent
events, we obtain:

WBF =
p1p2 . . . pc

p1p2 . . . pc + (1 − p1) (1 − p2) . . . (1 − pc)
(3)

where c is the number of words in the temporal window.
A condition probability, pi, of 50% provides no informa-

tion about the classification of a stroke. Accordingly, we de-
fine the relevance of a word as the deviation of its conditional
probability from 50%:

Relevance (pi) = |0.5 − pi| (4)

When computing WBF with Equation 3, we first rank all of
the words in the stroke’s temporal window from high to low
relevance, and then use only the top ten words for calculating
the combined probability. Additionally, we bound the values
of pi between 1% and 99% to prevent individual words from
dominating the combined probability in Equation 3. Finally,
we exclude from consideration any words that appear fewer
than five times in the training corpus, as their small sample
sizes result in imprecise probability estimates.

In our study, we observed that a varied vocabulary was used
to describe the same objects and gestures. If the Bayesian fil-
ter encounters a word that was not in the training corpus, it
will be unable to produce a probability. However, synonyms
of such words may be in the training corpus, and these could
be used to estimate probabilities. This is the insight behind
our Thesaurus Bayesian filter feature, WTBF . This feature is
similar to the Bayesian filter feature, except that as a prepro-
cessing step before learning probabilities, the training corpus
is expanded by inserting the synonyms for each original word.
The value of WTBF is computed just as in Equation 3. How-
ever, when retrieving the value of pi for a particular word wi,
we first create a list containing that word and all of its syn-
onyms. We then retrieve the conditional probability, pj , for
each word in the list. pi is assigned the most relevant value of
pj , where relevance is defined by Equation 4.

Our Markovian filter feature, MMF , considers word se-
quences. The string of words in the temporal window is first
expanded into all possible substrings of length five or less.
Then each of these substrings is further expanded into all
possible strings in which one or more of the interior words
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Feature Weight

This 1
This is 4
This 〈skip〉 a 4
This is a 16
This 〈skip〉 a piston 16
This is 〈skip〉 piston 16
This 〈skip〉 〈skip〉 piston 4
This is a piston 64

Table 2: Word sequences and weights

is replaced by a wildcard. For example, Table 2 shows the
possible substrings of length four of “This is a piston”.

Pr (Gesture | si), the conditional probability that a stroke
is a gesture given word sequence si, is computed using a
modified version of Bayes’ Theorem. The derivation begins
with an equation analogous to Equation 2, then after algebraic
manipulation and the introduction of a weighting factor, pro-
duces:

Pi = 0.5 +
(Gi − Ni) × Wi

2 × (Gi + Ni) × WMax
(5)

where Gi and Ni are the number of times si appeared in the
training corpus with a gesture or non-gesture, respectively.
Wi is a weight that depends on the length of the sequence.
The value is computed as Wi = 22(hi−1), where hi is the
number of words in si excluding wildcards. WMax is the
maximum weight across all sequences. Weighting the proba-
bility in this fashion biases the result so that shorter sequences
of words are scaled to neutral probabilities (i.e., 50%), while
probabilities for longer sequences are left unmodified.

6 Results

We used a form of holdout-validation to evaluate the accuracy
of our classifier.1 Each of the four holdout sets was comprised
of 39 randomly selected sketches for training, and 10 for test-
ing. The four holdout sets thus generated are named sets “A”
through “D”. For each of these sets, we used a beam search
process, with a beam width of 10, to determine which sets of
features are the most effective at classification. To begin, all
possible single-feature classifiers were trained and then eval-
uated on the test data. The 10 most accurate classifiers were
then expanded to produce a set of two-feature classifiers. The
10 best of these were then expanded to produce three-feature
classifiers, and so on. To provide additional insights about
which features are the most important, this process was per-
formed three times for each holdout set: once considering
only sketch features, once considering only speech features,
and once considering both. The results are shown in Figure 2
and Table 3.

The best sketch-only classifiers used between 6 and 9
features and achieved classification accuracy ranging from
75.1% to 78.0%. The most important features varied from
one holdout set to another. For example, the best single-
feature classifiers for the four holdout sets variously used

1In the future, we will use leave-one-out cross-validation, but
that computation was too time-consuming for our current experi-
ment.
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Figure 2: Accuracy vs. # of features for sketch-only, speech-
only, and all-feature classifiers.

DDNS , DDPS , DTCS , and DTPS . Generally, the best classi-
fiers with few features employed features that give spatial and
temporal proximity, such as distances and times to the next,
previous, or closest stroke. The best classifiers with three
or less features selected from among only DDNS , DDPS ,
DTNS , DTPS , DTCS , DUID, DMHD, DAC , and DET .

The best speech-only classifiers used 2 to 4 features, and
achieved accuracy between 78.0% and 79.4%. However,
nearly the same results could be obtained using only a single
speech feature, the Bayesian filter for some sets and the The-
saurus Bayesian filter for others. These single-feature classi-
fiers achieved between 76.5% and 79.0% accuracy.

With all features considered, the best classifiers used be-
tween 6 and 10 features, and achieved classification accuracy
ranging from 81.6% to 84.8%. The best single-feature classi-
fier used one of the Bayesian filters. Classifiers with a few
more features typically employed a Bayesian filter feature
along with the sorts of features used in the best low-feature-
count, speech-only classifiers.

Type Best Feature Set Acc.

Se
tA

Sketch DID DDPS DTPS DTNS DET DUCS 78%
Speech WWC WBF WTBF WMF 79%

All DID DDPS DDNS DTPS DET WBF 84%

Se
tB

Sketch DSL DHL DDNS DTPS DTNS DTCS 75%
Speech WTPS WBF WTBF 78%

All DSL DHL DDPS DDNS DTPS DUCS

DUID WBF WTPS WMF

82%

Se
tC

Sketch DSED DID DDPS DTCS DET DUID

DAHD

77%

Speech WWC WTBF 79%
All DDPS DTPS DTNS DTCS DUID

DMHD DAHD WWC WTBF

84%

Se
tD

Sketch DSL DAC DDC DHL DDPS DET

DUID DMHD DAHD

76%

Speech WWC WBF WTBF 78%
All DHL DTCS DET DMHD WTPS WBF 82%

Table 3: Best performing feature sets.
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7 Conclusion
Our set of 49 sketches included 3533 strokes intended as de-
vice structure, 658 as text, and 2404 as gestures. Overall
36.5% of the strokes were gestures, and 63.5% non-gestures.
Thus, a naı̈ve classifier would achieve 63.5% accuracy. Us-
ing both sketch and speech features, our classifier achieved
between 81.6% and 84.8%, depending on the holdout set.
While this is significantly better than the naı̈ve approach, the
real value of this work is that it provides a measure of the
information content of the sketch and speech. The accuracy
using only sketch features was similar to that achieved us-
ing only speech features. Thus, these two modalities have
roughly equivalent levels of content. However, that content is
clearly different as is evident from the fact that combining the
two modalities results in higher accuracy than either alone.

While our results are extremely encouraging, there are sev-
eral areas of possible improvement. For example, we formu-
lated our problem as a two-way classification task, but many
strokes did not fit well within that structure. For instance,
text comprised 10% of the pen strokes, but did not fit into ei-
ther the gesture or non-gesture categories. We may be able to
achieve more accurate results by considering a greater num-
ber of classes. Similarly, we use a simple approach based
on a fixed time threshold to define the temporal window of
speech associated with each pen stroke. Our window did not
always align well with the beginning of a sentence, making
it harder to detect relevant patterns in the grammatical struc-
ture. It may be possible to select the window based on pauses
in drawing or speaking, repetitions, etc., by building on the
work of Adler [2007] and Oviatt [1997]. There is also a
need to improve our representation of the visual context of a
stroke. We currently use a variety of contextual features, such
at the distance to the nearest previously drawn stroke, and the
color similarity of the underlying ink. Similarly, the classi-
fier considers the features of a stroke as well as those of the
subsequent and previous strokes. For objects such as dotted
lines, however, this may provide inadequate visual context.
Bishop’s [2004] work in distinguishing text from non-text in
a single-modal environment may provide a route to a solution.
Finally, our analysis to determine the most important features
was based on four subsets of the data. To reduce the chances
of over-fitting, it would be beneficial to perform this analy-
sis using leave-one-out validation to find the most effective
features for the entire data set.

We will also be working to integrate this classifier into
the broader sketch recognition process. We are interested in
measuring how effective our current classifier can be when
used as a pre-processing step. That is, given our current level
of performance at distinguishing gestures from non-gestures,
how much guidance does that provide in tackling recognition
tasks as formidable at those in Figure 1?

Our system takes an early fusion approach to integrating
speech and sketch information. Given the coarse nature of de-
sign sketches, effectively including speech directly in sketch
recognition is critical for understanding user intent. In fact,
the most surprising observation of our work is that the speech
features are slightly more effective than sketch features in
identifying gestures, which at first glance would appear to be
a shape recognition problem.
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