
SketchREAD: A Multi-Domain Sketch Recognition Engine

Christine Alvarado
MIT CSAIL

Cambridge, MA 02139 USA
calvarad@csail.mit.edu

Randall Davis
MIT CSAIL

Cambridge, MA 02139 USA
davis@csail.mit.edu

ABSTRACT
We present SketchREAD, a multi-domain sketch recognition
engine capable of recognizing freely hand-drawn diagram-
matic sketches. Current computer sketch recognition systems
are difficult to construct, and either are fragile or accomplish
robustness by severely limiting the designer’s drawing free-
dom. Our system can be applied to a variety of domains by
providing structural descriptions of the shapes in that do-
main; no training data or programming is necessary. Robust-
ness to the ambiguity and uncertainty inherent in complex,
freely-drawn sketches is achieved through the use of con-
text. The system uses context to guide the search for possible
interpretations and uses a novel form of dynamically con-
structed Bayesian networks to evaluate these interpretations.
This process allows the system to recover from low-level
recognition errors (e.g., a line misclassified as an arc) that
would otherwise result in domain level recognition errors.
We evaluated SketchREAD on real sketches in two domains—
family trees and circuit diagrams—and found that in both do-
mains the use of context to reclassify low-level shapes signif-
icantly reduced recognition error over a baseline system that
did not reinterpret low-level classifications. We also discuss
the system’s potential role in sketch-based user interfaces.

Categories and Subject Descriptors: I.5.4 [Pattern Recog-
nition]: Applications; H.5.2 [User Interfaces]: Interaction
Styles

Additional Keywords and Phrases: Pen-based UIs, in-
put and interaction technology, sketch recognition, intelligent
UIs, Bayesian networks

1 INTRODUCTION
While in recent years there has been an increasing interest
in sketch-based user interfaces [9, 13, 14], the problem of
robust free-sketch recognition remains largely unsolved. Be-
cause existing sketch recognition techniques are difficult to
implement, and are error-prone or severely limit the user’s
drawing style, many previous systems that support sketching
perform only limited recognition. ScanScribe, for example,
uses perceptual guidelines to support image and text editing,
but does not attempt to recognize the user’s drawing [14].
Similarly, the sketch-based DENIM system supports the de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright c© 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

sign of web pages but recognizes very little of the user’s
sketch [13]. Finally, NuSketch reasons about spatial relation-
ships in military diagrams, but does not recognize sketched
symbols [5]. Systems of this sort involve the computer in the
early design, making it easy to record the design process, but
they do not always facilitate automatic transition from the
early stage design tool to a more powerful design system.

To enable the construction of sketch-based interfaces for a
number of domains, we have created SketchREAD (Sketch
Recognition Engine for mAny Domains), a system capable
of understanding freely-drawn, messy, two-dimensional di-
agrammatic sketches. SketchREAD “understands” a user’s
sketch in that it parses a user’s strokes as they are drawn and
interprets them as objects in a domain of interest. Sketch-
READ operates in the background while the user sketches;
recognition results may be displayed after the user completes
the sketch or at any time during the recognition process. Our
engine does not assume it will receive user feedback for its
recognition, because having to give feedback can distract the
user during the design process. It may be applied to any do-
main in which sketches may be described in terms of dia-
grammatic symbols (e.g., circuit diagrams, military course
of action diagrams). Although SketchREAD is not designed
to recognize other types of sketches (e.g., three-dimensional
sketches and free-form sketches common in domains such as
architecture) the class of sketches it is designed to recognize
is important for designers in many domains. This system both
helps solve a challenging problem in sketch understanding
and enables more natural interaction with design software.

One of the most difficult problems in creating a sketch recog-
nition system is handling the tradeoff between ease of recog-
nition and drawing freedom. The more we constrain the
user’s drawing style, the easier recognition becomes. For ex-
ample, if we enforce the constraint that each component in
the domain must be a carefully drawn symbol that can be
created with a single stroke, it is relatively easy to build rec-
ognizers capable of distinguishing between the symbols, as
was done with Palm Pilot GraffitiTM . The advantage of us-
ing restricted recognizers is accuracy; the disadvantage is the
designer is constrained to a specific style of sketching.

Previous recognition-intensive systems have focused on tasks
where drawing style assumptions can greatly reduce recog-
nition complexity. Longet al. focus on designing special
graphical symbols that will not be confused easily by the
computer [10]. This approach improves recognition, but it
limits the designer to a specific set of single-stroke sym-
bols that may be natural only for certain tasks. The Quickset

nira
Text Box
Appeared in Proceedings of UIST 2004, pp.23-32.

Male Female DivorceMarriageChild−link

Figure 1: The symbols in the family tree domain.

system for recognizing military course of action (COA) dia-
grams uses multi-modal information to improve recognition
of sketched symbols [20], but assumes that each symbol will
be drawn independently, and that the user will likely speak
the name of the symbol when drawing it. These assumptions
aid recognition, but may fail for design tasks in other do-
mains. In electrical engineering, for example, designers draw
several symbols without pausing and probably do not speak
the name of the symbols they draw. Other previous systems
have similar constraints on drawing style or do not provide
the level of recognition robustness we seek here [17, 6, 3].

While the previous systems have proven useful for their re-
spective tasks, we aim to create a general sketch recognition
system that does not rely on the drawing style assumptions
of any one domain. To be usable, a sketch recognition-based
system must make few enough mistakes that sketching is less
work than using a more traditional (i.e., menu-based) inter-
face. To be broadly effective the system’s architecture should
be easily applied across a variety of domains, without hav-
ing to reengineer the system. Our system is a significant step
toward achieving these goals.

Our approach makes four contributions to the field of sketch-
based UIs. First, our engine separates information about ba-
sic shapes from their interpretation in a particular domain
so that our engine can more easily be extended to multi-
ple domains without having to recreate the shape recogniz-
ers. Second, we have developed a novel form of dynamically
constructed Bayesian networks to allow both stroke data and
higher-level shape information to influence the system’s in-
terpretation of the user’s strokes. Third, our system uses this
novel Bayesian network technique to guide its search for pos-
sible interpretations of the user’s sketch, allowing it to re-
cover from low-level interpretation errors (e.g., a line mis-
classified as an arc) that would otherwise prevent recognition
of the sketch. Fourth, we gathered and tested our recognition
engine on unconstrained freely-drawn data in two domains—
family trees and circuits. We show that SketchREAD con-
sistently reduced recognition errors over a baseline system
that did not reinterpret low-level classifications. The results
of these tests make concrete the strengths of our approach
and the remaining challenges we face in building a recogni-
tion engine that can better handle real-world data.

We begin by exploring the challenges of recognizing real-
world sketches. Next, we present our new approach to recog-
nition, then analyze our system’s performance on real data.
We conclude with a discussion of how to extend our system’s
power and how it can be used in sketch recognition user in-
terfaces (SkRUIs).

1
2

3

4

5
6

7

8
9

10

11

12

Figure 2: A partial sketch of a family tree.

2 THE CHALLENGES OF SKETCH UNDERSTANDING
Figure 2 shows the beginning of a sketch of a family tree,
with the strokes labelled in the order in which they were
drawn. The symbols in this domain are given in Figure 1.
The user started by drawing a mother and a father, then drew
three sons. He linked the mother to the sons by first drawing
the shafts of each arrow and then drawing the arrowheads.
(In our family tree diagrams, each parent is linked to each
child with an arrow.) He will likely continue the drawing by
linking the father to the children with arrows and linking the
two parents with a line.

Although relatively simple, this drawing presents many chal-
lenges for sketch recognition. While previous recognition
systems have addressed some of these challenges, Sketch-
READ is the first to address all of them using a general
framework that can be extended to multiple domains.

The first challenge illustrated in Figure 2 is the incremental
nature of the sketch process. Incremental sketch recognition
allows the computer to seamlessly interpret a sketch as it is
drawn and keeps the user from having to specify when the
sketch is complete. To recognize a potentially incomplete
sketch, a computer system must know when to recognize a
piece of that sketch and when to wait for more information.
For example, Stroke 1 can immediately be recognized as a
female, but Stroke 6 cannot be recognized without Stroke 7.

The second challenge is that many of the shapes in Fig-
ure 2 are visually messy. For example, the center arrow-
head (Stroke 11) looks more like an arc than two lines. Next,
the stroke used to draw the leftmost quadrilateral (Stroke 3)
looks like it is composed of five lines—the top of the quadri-
lateral is bent and could be reasonably divided into two lines
by a stroke parser. Finally, the lines in the rightmost quadri-
lateral (Strokes 6 and 7) do not touch in the top left corner.

The third issue is segmentation: It is difficult to know which
strokes are part of which shapes. For example, if the com-
puter knew that Strokes 9 and 11 were part of one shape,
the system would likely be able to match an arrow pattern to
these strokes using a standard algorithm, such as a neural net-
work. Unfortunately, segmentation is not an easy task. The
shapes in this drawing are not clearly spatially segmented,
and naively trying different combinations of strokes is pro-
hibitively time consuming. To simplify segmentation, many
previous systems (e.g., [13, 20]) assume each shape will be

drawn with temporally contiguous strokes. This assumption
does not hold here.

There are also some inherent ambiguities in how to segment
the strokes. For example, lines in our domain indicate mar-
riage, but not every line is a marriage-link. The shaft of the
leftmost arrow (Stroke 8) might also have been interpreted as
a marriage link between the female (Stroke 1) and the left-
most male (Stroke 3). In this case, the head of that arrow
(Stroke 12) could have been interpreted as a part of the draw-
ing that is not yet complete (e.g., the beginning of an arrow
from the leftmost quadrilateral (Stroke 3) to the top quadri-
lateral (Stroke 2)).

Finally, how shapes are drawn can also present challenges
to interpretation. The head of the rightmost arrow (part of
Stroke 10) is actually made of three lines, two of which over-
lap to form one side of the arrowhead. In order to recognize
the arrow, the system must know to collapse those two lines
into one, even though they do not actually overlap. Another
challenge arises because the same shape may not always be
drawn in the same way. For example, the arrows on the left
(Strokes 8 and 12, and Strokes 9 and 11) were drawn differ-
ently from the one on the right (Stroke 10) in that the user first
drew the shaft with one stroke and then drew the head with
another. This variation in drawing style presents a challenge
for segmentation and recognition because a system cannot
know how many strokes will be used to draw each object,
nor the order in which the parts of a shape will appear.

Many of the difficulties described in the example above arise
from the messy input and visual ambiguity in the sketch. It
is the context surrounding the messy or ambiguous parts of
the drawing that allows humans to interpret these parts cor-
rectly. We found that context also can be used to help our
system recover from low-level interpretation errors and cor-
rectly identify ambiguous pieces of the sketch. Context has
been used to aid recognition in speech recognition systems;
it has been the subject of recent research in computer vision
[18, 19] and has been used to a limited extent in previous
sketch understanding systems [3, 6, 13]. We formalize the
notion of context suggested by previous sketch recognition
systems. This formalization improves recognition of freely
drawn sketches using a general engine that can be applied to
a variety of domains.

3 TECHNICAL APPROACH
We have developed and implemented a general framework
for sketch recognition that handles the challenges presented
in the previous section and that can be applied to a variety of
domains by supplying domain specific pattern descriptions.

3.1 Knowledge Representation
We use a hierarchical shape description language to describe
the shapes in a domain. A hierarchical representation is use-
ful because it enables re-use of geometric shapes (e.g., ar-
rows) in a variety of domains, and because many sketched
symbols are compositional. Here we describe the language
only briefly. For a more complete description, see [7].

Figure 3 shows a simple use of the language. The arrow is an
example of ashape, which we use to mean a pattern recog-

head2

shaft
head1 MS

L

DEFINE ARROW

(Subshapes
L1,L2,L3: (Line shaft head1 head2))
(Constraints
C1: (coincident

shaft.p1 head1.p1)
C2: (coincident

shaft.p1 head2.p2)

C3: (equal-lengthhead1 head2)
C4: (shorterhead1 shaft)
C5: (acute-anglehead1 shaft)
C6: (acute-anglehead2 shaft)

DEFINE MOTHER-SON

(Subshapes
M,S,L: (FemaleM) (MaleS) (Child-link L)
(Constraints
C1: (touchesL.head S)
C2: (touchesL.tail M))

Figure 3: The description of the shape “arrow” and the
domain pattern “mother-son.” Child-links are defined
from arrows, males from quadrilaterals, and females
from ellipses. Labels for the subshapes and constraints
are used in Figure 4.

nizable in a given domain. The arrow is acompound shape,
i.e., one composed of non-recursivesubshapesfit together
according toconstraints. A line is a primitive shape—one
that cannot be decomposed into subshapes. Although primi-
tive shapes cannot be decomposed into subshapes, they may
have namedsubcomponentsthat can be used when describ-
ing other shapes, e.g., the endpoints of a line, “p1” and “p2”,
used in Figure 3.Domain shapesare shapes that have se-
mantic meaning in a particular domain. For example,line ,
arrow andchild-link are all shapes that may be rec-
ognized, but only a child-link has meaning in the family
tree domain.Domain patternsare combinations of domain
shapes that are likely to occur, for example a child-link point-
ing from a female to a male, indicating a relationship be-
tween mother and son. Recognition information for primi-
tive shapes and constraints are built in to SketchREAD; com-
pound shapes, including domain shapes and patterns, are rec-
ognized from primitive shapes and vary depending on the do-
main to which SketchREAD is applied.

The context in which a shape is likely to occur is given by
the higher-level shapes and domain patterns in which it ap-
pears. For example, the domain patternmother-son pro-
vides a context in which child-links (and in turn arrows),
males and females are likely to occur. This representation al-
lows our system to incorporate both domain knowledge and
shape information in its interpretation of the user’s sketch.
The separation between domain shapes and their geometric
subshapes facilitates the re-use of geometric shapes in other
domains (e.g., the arrow in electrical engineering symbols).
The shapes and domain patterns for the family tree domain
are listed in Table 1; constraints are omitted to save space.

3.2 Recognition Overview
Recognizing the sketch is a matter of parsing a user’s strokes
according to the specified visual language. Visual language
parsing has been studied [12], but most previous approaches

SHAPE/PATTERN (ABBR.) SUBSHAPES

Line (L) –
Ellipse (E) –
Polyline (PL) –
Arrow (A) Line h1, h2, shaft
Quadrilateral (Q) Linel1, l2, l3, l4
Marriage-link (ML) Line l
Divorce-link (DL) Polylinepl
Female (F) Ellipsee
Male (M) Quadrilateralm
Child-link (CL) Arrow a
Divorce (Div) Maleh; Femalew; DL l
Marriage (Mar) Maleh; Femalew; ML l
Partnership-F (PartF) Femalew1, w2; ML l
Partnership-M (PartM) Maleh1, h2; ML l
Father-daughter (FD) Malef ; Femaled; CL l
Mother-daughter (MD) Femalem, d; CL l
Father-son (FS) Malef, s; CL l
Mother-son (MS) Femalem; Male s; CL l

Table 1: A complete list of the shapes and domain
patterns in the family tree domain.

assume diagrammatic input free from low-level recognition
errors and cannot handle realistic, messy, stroke-based in-
put. Mahoney and Fromherz use mathematical constraints
to cope with the complexities of parsing sketches of curvi-
linear configurations such as stick figures [11]. Shilmanet
al. [16] present a parsing method similar to our approach,
with two differences. First, their work employs a spatially-
bounded search for interpretations that quickly becomes pro-
hibitively expensive. Second, their parsing method builds and
scores a parse tree for each interpretation independently; we
allow competing interpretations to influence each other.

As the user draws, our system uses a two-stage generate
and test recognition process to parse the strokes into pos-
sible interpretations. This two-dimensional parsing problem
presents a challenge for a real-time system. Noise in the in-
put makes it impossible for the system to recognize low-level
shapes with certainty or to be sure whether or not constraints
hold. Low-level misinterpretations cause higher-level inter-
pretations to fail as well. On the other hand, trying all pos-
sible interpretations of the user’s strokes guarantees that an
interpretation will not be missed, but is infeasible due to the
exponential number of possible interpretations.

To solve this problem we use a combined bottom-up and top-
down recognition algorithm that generates the most likely in-
terpretations first (bottom-up), then actively seeks out parts
of those interpretations that are still missing (top-down). Our
approach uses a novel application of dynamically constructed
Bayesian networks to evaluate partial interpretation hypothe-
ses and then expands the hypothesis space by exploring the
most likely interpretations first. The system does not have to
try all combinations of all interpretations, but can focus on
those interpretations that contain at least a subset of easily-
recognizable subshapes and can recover any low-level sub-
shapes that may have been mis-recognized.

3.3 Hypothesis Evaluation
Our method of exploring the space of possible interpreta-
tions depends on our ability to assess partial hypotheses. We

C1L2 C6L1 L3

Arrow

M L S C1 C2...

Mother−Son

Figure 4: The Bayesian network fragment constructed
from the description of an arrow and the domain pat-
tern “mother-son” given in Figure 3.

use a dynamically constructed Bayesian network to evalu-
ate the current set of hypothesized interpretations. (We dis-
cuss below how these hypotheses are generated.) We give an
overview and illustration of this method here; more details
are presented in [1].

Bayesian networks provide a framework for combining mul-
tiple sources of evidence to reason about uncertainty in the
world. They consist of two parts: a directed acyclic graph
that encodeswhich factors in the world influence each other,
and a set of conditional probability distributions that spec-
ify howthese factors influence one another. Each node in the
graph represents something to be measured, and a link be-
tween two nodes indicates that there is a causal relationship
from one node to another. Each node contains a conditional
probability table specifying how it is influenced by its par-
ents. For more information, see [4], which provides an intu-
itive overview of Bayesian networks.

Bayesian networks are traditionally used to model static do-
mains in which the variables and relationships between those
variables are known in advance. Static networks are not suit-
able for the task of sketch recognition because we cannot
predicta priori the number of strokes or symbols the user
will draw. Therefore, our network structure must be changed
to reflect each new stroke. To allow the network to grow
as new data arrives, we specify a library of Bayesian net-
work fragments that describe shapes and domain patterns.
This framework is similar to the Object-Oriented Bayesian
Networks proposed in [8] but has been developed specifi-
cally for use in a real-time recognition system. As an exam-
ple of our representation, the fragments for the descriptions
from Figure 3 are given in Figure 4. As the recognition sys-
tem proposes interpretations for the user’s strokes, it makes
copies of the corresponding fragments from the library and
links them together to form a complete Bayesian network (as
in Figure 5). Each node,n, in the network has two values,
true and false , and represents a possible interpretation
for a subset of the user’s strokes or a constraint between in-
terpretations.P (n = true) reflects the strength of that in-
terpretation. The complete network contains the set of all the
interpretations the system is considering.

Recall that links in the Bayesian network indicate causal re-
lationships, so the arrow fragment in Figure 4 represents the
hypothesis that the user intended to draw an arrow, which in
turn “caused” her to produce three lines that obey a corre-
sponding set of constraints (i.e. they are connected, two of
them are the same length, etc.). Similarly, the user’s intent to
draw a mother-son relationship caused her to draw a male, a
female and a child-link, which in turn caused her to draw an
ellipse, an arrow and a quadrilateral, and so forth.

L1 L2 L3 L4L6L5

Stroke4 Stroke5

O1 O2 O3 O4

Q1ML1A1

Constraints
for Q1

Observations

M1

PartM1Mar1 PartF1
Domain

Shapes for M1

Figure 5: A portion of the interpretation network gen-
erated while recognizing the sketch in Figure 2. Abbre-
viations are given in Table 1

To explain the semantics of the Bayesian network further,
we consider a piece of the network that is generated in re-
sponse to Strokes 4 and 5 in the example given in Figure 2.
Figure 5 shows the part of the Bayesian network represent-
ing the possible interpretations that the system generated
for these strokes (which we call theinterpretation network).
Each node represents a hypothesized interpretation for some
piece of the sketch. For example, Q1 represents the system’s
hypothesis that the user intended to draw a quadrilateral. A
higher level hypothesis is compatible with the lower level
hypotheses it points to. For example, if M1 (the hypothesis
that the user intended to draw a male) is correct, Q1 (the hy-
pothesis that the user intended to draw a quadrilateral) and
L1-L4 (the hypotheses that the user intended to draw 4 lines)
will also be correct. Two hypotheses that both point to the
same lower level hypothesis represent competing interpre-
tations for the lower level shape and are incompatible. For
example, A1, ML1 and Q1 are three possible higher level
interpretations for line L1, only one of which may be true.

Hypotheses are linked to stroke data with observation nodes
that represent measurements taken from one or more strokes.
For example, L1 is linked to O1, which is measured from
Stroke 4. Consequently, L1 represents the hypothesis that
Stroke 4 is a line, not simply that there is a line somewhere on
the page. A1 is a partial hypothesis–it represents the hypoth-
esis that L1 (and hence Stroke 4) is part of an arrow whose
other two lines have not yet been drawn. Line nodes repre-
senting lines that have not been drawn (L5 and L6) are not
linked to observation nodes because there is no stroke from
which to measure these observations. We refer to these nodes
(and their corresponding interpretations) asvirtual.

The probability of each interpretation is influenced both by
stroke data (through its children) and by the context in which
it appears (through its parents), allowing the system to handle
noise in the drawing. For example, the bottom edge of quadri-
lateral Q1 is slightly curved (see Figure 2); stroke data (O4)
only weakly supports the corresponding line hypothesis (L4).

However, the other three edges of Q1 are fairly straight, and
O1-O3 raise the probabilities of L1-L3, respectively, which
in turn raise the probability of Q1. Q1 provides a context in
which to evaluate L4, and because Q1 is well supported by
L1-L3 (and by the constraint nodes), it raises the probability
of L4.

The fact that partial interpretations have probabilities allows
the system to assess the likelihood of incomplete interpreta-
tions based on the evidence it has seen so far. In fact, even
virtual nodes have probabilities, corresponding to the proba-
bility that the user (eventually) intends to draw these shapes
but either has not yet drawn this part of the diagram or the
correct low-level hypotheses have not yet been proposed be-
cause of low-level recognition errors. As we describe below,
a partial interpretation with a high probability cues the sys-
tem to examine the sketch for possible missed low-level in-
terpretations.

3.4 Hypothesis Generation
The major challenge in hypothesis generation is to gener-
ate the correct interpretation as a candidate hypothesis with-
out generating too many to consider in real-time. A naive
approach to hypothesis generation simply would attempt to
match all shapes to all possible combinations of strokes, but
this would produce an exponential number of interpretations.
Our method of evaluating partial interpretations allows us to
use a bottom-up/top-down generation strategy that greatly re-
duces the number of hypotheses considered but still gener-
ates the correct interpretation for most shapes in the sketch.

Our hypothesis generation algorithm has three steps:

1. Bottom-up step: As the user draws, the system parses the
strokes into primitive objects using a domain-independent
recognition toolkit developed in previous work [15]. Com-
pound interpretations are hypothesized for each compound
object that includes these low-level shapes, even if not all
the subshapes of the pattern have been found.

2. Top-down step: The system attempts to find subshapes
that are missing from the partial interpretations generated
in step 1, often by reinterpreting strokes that are temporally
and spatially proximal to the proposed shape.

3. Pruning step: The system removes unlikely interpreta-
tions.

This algorithm, together with the Bayesian network repre-
sentation presented above, deals successfully with the chal-
lenges presented in Section 2. Using the example in Figure 2,
we illustrate how the system generates hypotheses that allow
the Bayesian network mechanism to resolve noise and in-
herent ambiguity in the sketch, how the system manages the
number of potential interpretations for the sketch, how the
system recovers from low-level recognition errors, and how
the system allows for variation in drawing style.

Based on low-level interpretations of a stroke, the bottom-
up step generates a set of hypotheses to be evaluated using
the Bayesian network mechanism presented in the previous
section. In the sketch in Figure 2, the user’s first stroke is cor-
rectly identified as an ellipse by the low-level recognizer, and
from that ellipse the system generates the interpretationel-
lipse , and in turn, partial interpretations for mother-son,

Wire Resistor Transistor Voltage src. Battery Diode Current src. Ground Capacitor A/C src.

Figure 6: The symbols in the circuit domain.

mother-daughter, father-daughter, marriage, partner-female,
and divorce. These proposed interpretations are calledtem-
platesthat have aslot for each subshape. Future interpreta-
tions will be filled into empty slots.

Naive bottom-up interpretation easily can generate too many
hypotheses to consider in real-time. We employ three strate-
gies to control the number of hypotheses generated in the
bottom-up step. First, when an interpretation can be fit into
more than one slot in a higher-level template (e.g., in Fig-
ure 5, L1 could be the shaft or either of the lines in the head
of A1), the system arbitrarily chooses one of the valid slots
rather than generating one hypothesis for each potential fit.
Later, the system can shuffle the shapes in the template when
it attempts to fit more subshapes.

Second, the system does not generate higher-level interpre-
tations for interpretations that are only partially filled. The
lines generated from Strokes 4 and 5 result in one partial
hypothesis—arrow (A1)—and two complete hypotheses—
quadrilateral (Q1) andmarriage-link (ML1) (Fig-
ure 5). Continuing to generate higher-level templates from
partial hypotheses would yield a large number of hypotheses
(one hypothesis for each higher level domain pattern involv-
ing each existing partial hypothesis). To avoid this explosion,
the system continues to generate templates using only the
complete hypotheses (in this case, ML1 and Q1).

Third, when the system processes polylines, it assumes that
all the lines in a single polyline will be used in one interpreta-
tion. While this assumption does not always hold, in practice
we find that it is often true and greatly reduces the number of
possible interpretations. The system recognizes Stroke 2 as a
4-line polyline. The bottom-up step generates only a quadri-
lateral because that is the only shape in the domain that re-
quires four lines.

The top-down step allows our system to recover from low-
level recognition errors. Stroke 3 is incorrectly, but reason-
ably, parsed into 5 lines by the low-level recognizer. Because
the system does not know about any 5-line objects, but does
know about things that contain fewer than 5 lines, it attempts
to re-segment the stroke into 2 lines, 3 lines and 4 lines (with
a threshold on acceptable error). It succeeds in re-segmenting
the stroke into 4 lines and successfully recognizes the lines
as a quadrilateral. Although the 4 line fit is not perfect, the
network allows the context of the quadrilateral in addition to
the stroke data to influence the system’s belief in the 4-line
interpretation. Also note that the 5 lines from the original
segmentation remain in the interpretation network.

The system controls the number of interpretations in the net-
work through pruning, which occasionally causes it to prune
a correct hypothesis before it is complete. The top-down step
regenerates previously-pruned hypotheses, allowing the sys-

tem to correctly interpret a symbol despite variations in draw-
ing order. The leftmost arrow in Figure 2 was drawn with
two non-consecutive strokes (Strokes 8 and 12). In response
to Stroke 8, the system generates both an arrow partial hy-
pothesis and a marriage-link hypothesis (using the line hy-
pothesis generated for this stroke). Because the user does not
immediately complete the arrow, and because the competing
marriage-link hypothesis is complete and has a high proba-
bility, the system prunes the arrow hypothesis after Stroke 9
is drawn. Later, Stroke 12 is interpreted as a 2-line polyline
and a new arrow partial hypothesis is generated. The top-
down step then completes this arrow interpretation using the
line generated previously from Stroke 8, effectively regener-
ating a previously pruned interpretation.

3.5 Selecting an Interpretation
As each stroke is drawn, the sketch system uses a greedy
algorithm to select the best interpretation for the sketch.
It queries the Bayesian network for the strongest complete
interpretation, sets aside all the interpretations inconsistent
with this choice, chooses the next most likely remaining do-
main interpretation, and so forth. It leaves strokes that are
part of partial hypotheses uninterpreted. Although the sys-
tem selects the most likely interpretation at every stroke, it
does not eliminate other interpretations. Partial interpreta-
tions remain and can be completed with the user’s subsequent
strokes. Additionally, the system can change its interpreta-
tion of a stroke when more context is added.

4 APPLICATION AND RESULTS
Applying SketchREAD to a particular domain involves two
steps: specifying the structural descriptions for the shapes in
the domain and specifying the prior probabilities for the do-
main patterns and any top-level shapes (i.e., those not used
in domain patterns, which, consequently, will not have par-
ents in the generated Bayesian network. See [1] for details on
how probabilities are assigned to other shapes). We applied
SketchREAD to two domains: family trees and circuits. For
each domain, we wrote a description for each shape and pat-
tern in that domain (Figures 1 and 6) and estimated the nec-
essary prior probabilities by hand. Through experimentation,
we found the recognition performance to be insensitive to the
exact values of these priors.

4.1 Data Collection
SketchREAD can recognize simple sketches nearly perfectly
in both the family tree and circuit domains, but we wanted to
test its performance on more complex, real-world data. Our
goal was to collect sketches that were as natural and uncon-
strained as the types of sketches people produce on paper
to test the limits of our system’s recognition performance.
To collect these sketches, we used a data collection program
for the Tablet PC developed by others in our group that al-
lows the user to sketch freely and displays the user’s strokes

Figure 7: Examples that illustrate the range of com-
plexity of the sketches collected.

exactly as she draws them, without performing any type of
recognition. Most of our users had played with a Tablet PC
before they performed our data collection task but had never
used one for an extended period of time. None used any type
of pen-based computer interface on a regular basis. The users
first performed a few warm-up tasks, at the end of which all
users expressed comfort drawing on the Tablet PC.

To collect the family tree sketches, we asked each user to
draw her family tree using the symbols presented in Figure 1.
Users were told to draw as much or as little of the tree as they
wanted and that they could draw the shapes however felt nat-
ural to them. Because erasing strokes introduces subtleties
into the recognition process that our system is not yet de-
signed to deal with, users were told that they could not erase,
and that the exact accuracy of their family tree diagram was
not critical. We collected ten sketches of varying complexity.

We then recruited subjects with basic knowledge of circuit
diagram construction and showed them examples of the types
of circuits we were looking for. After a warm-up task, sub-
jects were instructed to draw several circuits. We specified
the number and types of components to be included in the cir-
cuit and then and asked them to design any circuit using those
components. Subjects were instructed not to worry about the
functionality of their circuit, only that they should try to pro-
duce realistic circuits. We collected 80 diagrams in all.

The circuit diagrams were considerably more complicated
than the family tree diagrams. One limiting assumption that
SketchREAD currently makes is that the user will not draw
more than one symbol with a single stroke. Unfortunately,
in drawing circuit diagrams, users often draw many symbols
with a single stroke. To allow SketchREAD to handle the
circuit diagrams, we broke apart strokes containing multiple
objects by hand. This is clearly a limitation of our current
system; we discuss below how it might be handled.

5 Performance Results
We ran SketchREAD on each family tree sketch and each cir-
cuit sketch. We present qualitative results, as well as aggre-
gate recognition and running time results for each domain.
Our results illustrate the complexity our system can currently
handle, as well as the system’s current limitations. We dis-
cuss those limitations below, describing how best to use the
system in its current state and highlighting what needs to be

Missed line

Missed line

Missed line

Missed line

Ground: 0/4
Resistor: 4/4
Battery: 2/2 + 3 false positive
Transistor: 0/2

(a) Baseline System

Too messy

Ground: 3/4
Resistor: 4/4
Battery: 2/2 + 1 false positive
Transistor: 2/2

(b) SketchREAD

Figure 8: Recognition performance example. Overall
recognition results (# correct / total) are shown in the
boxes.

done to make the system more powerful. Note that to ap-
ply the system to each domain, we simply loaded the do-
main’s shape information; we did not modify the recognition
system. Although SketchREAD does not perform perfectly
on every sketch, its generality and performance on complex
sketches illustrates its promise over previous approaches.

Figure 8 illustrates how our system is capable of handling
noise in the sketch and recovering from missed low-level in-
terpretations. In the baseline case, one line from each ground
symbol was incorrectly interpreted at the low-level, causing
the ground interpretations to fail. SketchREAD was able to
reinterpret those lines using the context of the ground symbol
in three of the four cases to correctly identify the symbol. In
the fourth case, one of the lines was simply too messy, and
SketchREAD preferred to (incorrectly) recognize the top two
lines of the ground symbol as a battery.

In evaluating our system’s performance, direct comparisons
with previous work are difficult, as there are few (if any)
published results for this type of recognition task. The clos-
est published sketch recognition results are for the Quick-
set system, which also uses top-down information (through
multi-modal input) to recognize sketched symbols, but this
system assumes object segmentation, making its recognition
task different from ours [20]. We compared SketchREAD’s
recognition performance with the performance of a strictly
bottom-up approach of the sort used in previous systems

Size #Shapes % Correct
BL SR

Mean 50 34 50 77
S1 24 16 75 100
S2 28 16 75 87
S3 29 23 57 78
S4 32 22 31 81
S5 38 31 54 87
S6 48 36 58 78
S7 51 43 26 72
S8 64 43 49 74
S9 84 49 42 61

S10 102 60 57 80

Table 2: Recognition rates for the baseline system (BL)
and SketchREAD (SR) for each sketch for the family
tree domain. The size column indicates the number of
strokes in each sketch.

Total % Correct # False Pos
BL SR BL SR

AC Source 4 100 100 35 29
Battery 96 60 89 56 71

Capacitor 39 56 69 27 14
Wire 1182 62 67 478 372

Ground 98 18 55 0 5
Resisitor 330 51 53 7 8

Voltage Src. 43 2 47 1 8
Diode 77 22 17 0 0

Current Src. 44 7 16 0 0
Transistor 43 0 7 0 14

Table 3: Aggregate recognition rates for the baseline
system (BL) and SketchREAD (SR) for the circuit dia-
grams by shape.

[3, 13]. This strictly bottom-up approach combined low-level
shapes into higher-level patterns without top-down reinter-
pretation. Even though our baseline system did not reinter-
pret low-level interpretations, it was not trivial. It could han-
dle some ambiguities in the drawing (e.g., whether a line
should be interpreted as a marriage-link or the side of a
quadrilateral) using contextual information in the bottom-up
direction. To encourage others to compare their results with
those presented here we have made our test set publicly avail-
able at http://rationale.csail.mit.edu/ETCHASketches.

We measured recognition performance for each system by
determining the number of correctly identified objects in
each sketch (Table 2 and Table 3). For the family tree dia-
grams SketchREAD performed consistently and notably bet-
ter than our baseline system. On average, the baseline sys-
tem correctly identified 50% of the symbols while Sketch-
READ correctly identified 77%, a 54% reduction in the num-
ber of recognition errors. Due to inaccurate low-level recog-
nition, the baseline system performed quite poorly on some
sketches. Improving low-level recognition would improve
recognition results for both systems; however, SketchREAD
reduced the error rate by approximately 50% independent of
the performance of the baseline system. Because it is impos-
sible to build a perfect low-level recognizer, SketchREAD’s
ability to correct low-level errors will always be important.

Circuit diagrams present SketchREAD with more of a chal-
lenge for several reasons. First, there are more shapes in the
circuit diagram domain and these shapes are more complex.

Second, there is a stronger degree of overlap between shapes
in the circuit diagrams. For example, it can be difficult to dis-
tinguish between a capacitor and a battery. As another exam-
ple, a ground symbol contains within it (at least one) battery
symbol. Finally, there is more variation in the way people
draw circuit diagrams, and their sketches are messier caus-
ing the low-level recognizer to fail more often. They tend to
include more spurious lines and over-tracings.

Overall, SketchREAD correctly identified 62% of the shapes
in the circuit diagrams, a 17% reduction in error over the
baseline system. It was unable to handle more complex shapes,
such as transistors, because it often failed to generate the cor-
rect mapping between strokes and pieces of the template. Al-
though the system attempts to shuffle subshapes in a template
in response to new input, for the sake of time it cannot con-
sider all possible mappings of strokes to templates. We dis-
cuss below how we might extend SketchREAD to improve its
performance on complex domains such as circuit diagrams.

We measured SketchREAD’s running time to determine how
it scales with the number of strokes in the sketch. Figure 9
graphs the median time to process each stroke for each do-
main. The vertical bars in the graph show the standard de-
viation in processing time over the sketches in each domain.
(One family tree diagram took a particularly long time to pro-
cess because of the complexity of its interpretation network,
discussed below. This sketch affected the median processing
time only slightly but dominated the standard deviation. It
has been omitted from the graph for clarity.) Three things
about these graphs are important. First, although Sketch-
READ does not yet run in real-time, the time to process each
stroke in general increased only slightly as the sketch got
larger. Second, not every stroke was processed by the system
in the same amount of time. Finally, the processing time for
the circuit diagrams is longer than the processing time for the
family trees.

By instrumenting the system, we determined that the pro-
cessing time is dominated by the inference in the Bayesian
network, and all of the above phenomena can be explained
by examining the size and complexity of the interpretation
network. The number of nodes in the interpretation network
grows approximately linearly as the number of strokes in-
creases. This result is encouraging, as the network would
grow exponentially using a naive approach to hypothesis
generation. The increase in graph size accounts for the slight
increase in processing time in both graphs. The spikes in the
graphs can be explained by the fact that some strokes not only
increased the size of the network, but had more higher-level
interpretations, creating more fully connected graph struc-
tures, which causes an exponential increase in inference time.
After being evaluated, most of these high-level hypotheses
were immediately pruned, accounting for the sharp drop in
processing time on the next stroke. Finally, the fact that cir-
cuits take longer to process than family trees is related to the
relative complexity of the shapes in the domain. There are
more shapes in the circuit diagram domain and they are more
complex, so the system must consider more interpretations
for the user’s strokes, resulting in larger and more connected
Bayesian networks.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

T
im

e
(s

ec
)

Stroke Number

(a) Family Tree

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

T
im

e
(s

ec
)

Stroke Number

(b) Circuit

Figure 9: The median incremental time it took the system to process each stroke in the family tree and circuit diagrams.
Vertical bars show the standard deviation across the sketches in each domain.

6 SKETCH RECOGNITION USER INTERFACES (SKRUIS)
Our goal is to use SketchREAD in sketch recognition user in-
terfaces (SkRUIs). In this section we discuss SketchREAD’s
strengths and limitations with two purposes. First, we discuss
the type of interface in which SketchREAD can be used cur-
rently. Second, we discuss the system’s limitations and how
they can be addressed so that its overall performance can be
improved to better handle more complicated domains.

6.1 Building Design Tools with SketchREAD
We presented results on sketches of family trees and circuits,
but SketchREAD can be applied to any domain that has a
clear language of symbols. Currently SketchREAD is best
used in simple domains where the shapes have little overlap
and are drawn spatially separated. As an example, Sketch-
READ was able to process the simpler family trees in near
real-time. It ran into difficulty when encountering many over-
lapping shapes, such as the arrows the top right drawing in
Figure 7. Based on these guidelines, we used SketchREAD
to build a sketch-based system for constructing box and ar-
row diagrams in Power Point and conducted an informal
user study on this system [2]. People sketched their diagrams
freely while SketchREAD ran in the background. The system
produced few errors in this simple domain, allowing us to in-
vestigate issues such as how and when to display recognition
feedback, and how to allow people to edit their sketches.

While interpretations are selected after every stroke, deter-
mining when to display these interpretations to the user is by
itself an interesting and difficult question of human computer
interaction. One approach we are exploring is to use the sys-
tem’s determination of the completeness of an interpretation
to inform it when to display an interpretation and when to
wait for more strokes.

Even though SketchREAD reduces recognition error, it will
never eliminate it. SketchREAD’s interpretation-graph archi-
tecture could itself be used to reduce the burden placed on
the user in correcting the system’s errors. Often in compli-
cated diagrams, errors are interconnected. If there are many
competing interpretations, choosing the wrong interpretation
for one part of the diagram often will lead the system to

choose the wrong interpretation for the surrounding strokes.
SketchREAD could display its recognition results on top of
the user’s original strokes, so that the user can see the con-
text of these results. Then, the user could help the system by
tracing over the strokes for one of the symbols that was mis-
recognized. This retracing would help the system recover
from the error because the user’s strokes would be cleaner
and because the system would know that they were all part of
a single symbol. Then, based on this new interpretation, the
system could reevaluate the surrounding strokes and (hope-
fully) recover some of the missed interpretations that might
still exist but simply were not currently chosen as the best
interpretation.

Finally, one of the main causes of recognition error might be
dealt with through UI design. The system had trouble with
the fact that the users varied the structure of their symbols
even though they were explicitly shown the desired structure
for each symbol. For example, although we instructed peo-
ple to draw a voltage source using a circle with a plus and
a minus next to it, some people put the plus and minus in-
side the circle. SketchREAD is designed to handle variations
in the way people draw, but cannot handle such unexpected
changes to the basic shape of the symbol. Although ideally
we would like to support all methods people have for drawing
each object, this might never be possible. Instead, a simple
interactive training step before a new user uses the interface
could help eliminate this type of variation without imposing
too many limitations on the user’s drawing style.

6.2 Performance Improvement
SketchREAD significantly improves the recognition perfor-
mance of unconstrained sketches. However, its accuracy, es-
pecially for complicated sketches and domains, is still too
low to be practical in most cases. Here we consider how to
improve the system’s performance.

First, while SketchREAD always corrected some low-level
interpretation errors, its overall performance still depended
on the quality of the low-level recognition. Our low-level rec-
ognizer was highly variable and could not cope with some
users’ drawing styles. In particular, it often missed corners

of polylines, particularly for symbols such as resistors. Other
members of our group are working on a low-level recognizer
that adapts to different users’ drawing styles.

Second, although in general SketchREAD’s processing time
scaled well as the number of strokes increased, it occasion-
ally ran for a long period. The system had particular trouble
with areas of the sketch that involved many strokes drawn
close together in time and space and with domains that in-
volve more complicated or overlapping symbols. This in-
crease in processing time was due almost entirely to in in-
crease in Bayesian network complexity.

We suggest two possible solutions. First, part of the complex-
ity arises because the system tries to combine new strokes
with low-level interpretations for correct high-level interpre-
tations (e.g., the four lines that make a quadrilateral). These
new interpretations were pruned immediately, but they in-
creased the size and complexity of the network temporar-
ily, causing the bottlenecks noted above. In response, we
are testing methods for “confirming” older interpretations
and removing their subparts from consideration other higher-
level interpretations as well as confirming their values in the
Bayesian network so that their posterior probabilities do not
have to be constantly re-computed. Second, we can modify
the belief propagation algorithm we are using. We currently
use Loopy Belief Propagation, which repeatedly sends mes-
sages between the nodes until each node has reached a sta-
ble value. Each time the system evaluates the graph, it resets
the initial messages to one, essentially erasing the work that
was done the last time inference was performed, even though
most of the graph remains largely unchanged. Instead, this
algorithm should begin by passing the messages it passed at
the end of the previous inference step.

Finally, because our recognition algorithm is stroke-based,
spurious lines and over-tracing hindered the system’s perfor-
mance in both accuracy and running time. A preprocessing
step to merge strokes into single lines would likely greatly
improve the system’s performance. Also, in the circuit dia-
gram domain, users often drew more than one object with
a single stroke. A preprocessing step could help the system
segment strokes into individual objects.

7 CONCLUSION
We have shown how to use context to improve online sketch
interpretation and demonstrated its performance in Sketch-
READ, an implemented sketch recognition system that can
be applied to multiple domains. We have shown that Sketch-
READ is more robust and powerful than previous systems
at recognizing unconstrained sketch input in a domain. The
capabilities of this system have applications both in human
computer interaction and artificial intelligence. Using our
system we will be able to further explore the nature of usable
intelligent computer-based sketch systems and gain a bet-
ter understanding of what people would like from a drawing
system that is capable of understanding their freely-drawn
sketches as more than just strokes. This work provides a nec-
essary step in uniting artificial intelligence technology with
novel interaction technology to make interacting with com-
puters more like interacting with humans.

8 ACKNOWLEDGEMENTS
This work is supportedby Intel, Microsoft'siCampus project,
and MIT’s Project Oxygen. We would like to thank our users
for their time and the members of the MIT Design Rationale
Group and Alex Snoeren for helpful editing comments. We
would also like to thank Alex Snoeren and Aaron Adler for
help with compiling recognition results.

REFERENCES
1. C. Alvarado.Multi-Domain Sketch Understanding. PhD the-

sis, Massachusetts Institute of Technology, 2004.
2. C. Alvarado. Sketch recognition and usability: Guidelines for

design and development. InAAAI Fall Symposium on Pen-
Based Interaction, 2004.

3. C. Alvarado and R. Davis. Resolving ambiguities to create a
natural sketch based interface. InProc. of IJCAI, 2001.

4. E. Charniak. Bayesian networks without tears: making
bayesian networks more accessible to the probabilistically un-
sophisticated.Artificial Intelligence, 12(4):50–63, 1991.

5. K. D. Forbus, J. Usher, and V. Chapman. Sketching for mili-
tary course of action diagrams. InProc. of IUI, 2003.

6. M. Gross and E. Y.-L. Do. Ambiguous intentions: a paper-like
interface for creative design. InProc. of UIST, 1996.

7. T. Hammond and R. Davis. LADDER: A language to describe
drawing, display, and editing in sketch recognition. InProc.
of IJCAI, 2003.

8. D. Koller and A. Pfeffer. Object-oriented bayesian networks.
In Proc. of UAI, 1997.

9. J. A. Landay and B. A. Myers. Interactive sketching for the
early stages of user interface design. InProc. of CHI, 1995.

10. A. C. Long, Jr., J. A. Landay, L. A. Rowe, and J. Michiels.
Visual similarities of pen gestures. InProc. of CHI, 2000.

11. J. V. Mahoney and M. P. J. Fromherz. Three main concerns
in sketch recognition and an approach to addressing them. In
AAAI Spring Symposium on Sketch Understanding, 2002.

12. K. Marriott, B. Meyer, and K. Wittenburg. A survey of vi-
sual language specification and recognition. In K. Marriott
and B. Meyer, editors,Visual Language Theory, pages 5–85.
Springer-Verlag, 1998.

13. M. W. Newman, J. Lin, J. I. Hong, and J. A. Landay. DENIM:
An informal web site design tool inspired by observations of
practice.Human-Computer Interaction, 18(3):259–324, 2003.

14. E. Saund, D. Fleet, D. Larner, and J. Mahoney. Perceptually
supported image editing of text and graphics. InProc. of UIST,
2003.

15. T. M. Sezgin, T. Stahovich, and R. Davis. Sketch based inter-
faces: Early processing for sketch understanding. InProc. of
PUI, 2001.

16. M. Shilman, H. Pasula, S. Russell, and R. Newton. Statisti-
cal visual language models for ink parsing. InAAAI Spring
Symposium on Sketch Understanding, 2002.

17. T. Stahovich, R. Davis, and H. Shrobe. Generating multi-
ple new designs from a sketch.Artificial Intelligence, 104(1-
2):211–264, 1998.

18. T. M. Strat and M. A. Fischler. Context-based vision: Rec-
ognizing objects using information from both 2-d and 3-d im-
agery.IEEE Trans. on PAMI, 13(10):1050–1065, 1991.

19. A. Torralba and P. Sinha. Statistical context priming for object
detection. InProc. of ICCV, 2001.

20. L. Wu, S. L. Oviatt, and P. R. Cohen. Multimodal
integration—a statistical view.IEEE Trans. on Multimedia,
1(4):334–341, 1999.

