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1. Introduction

People sketch to express their early design ideas in many
domains, but current computer tools offer few advantages
to designers during this sketching phase. Our goal is to
construct a general recognition architecture that can be ap-
plied to a number of domains that is capable of parsing the
user’s strokes (in real time) and interpreting them as depict-
ing objects in the domain of interest without limiting the
designer’s drawing freedom. Such an interpretation engine
will enable the creation of powerful and natural early-stage
computer aided design tools.

The problem of two-dimensional recognition is to deter-
mine which set of known patterns best describes the in-
put the system receives. Because sketched objects rarely
appear in their canonical representations (for example, an
arrow may point in any direction, and may vary in size),
recognizing an object in a sketch involves recovering the
underlying shape of the object in the face of a large number
of legal transformations, or poses. The process of search-
ing over the possible poses for a shape is often infeasible in
real-time, even over a pre-segmented portion of the image.

In contrast, rather than naively matching all possible poses
of an object or set of objects to the user’s input, our sys-
tem uses a two-stage generate-and-test method to identify
shapes in the user’s drawing. In the first stage, our system
relies on a rough processing of the user’s strokes to gener-
ate zero or more likely shape models, each in a set pose,
that might explain a portion of the drawing. In the second
stage, the system uses a novel application of dynamically
constructed Bayesian networks to determine how well each
model fits the data, then uses this evaluation to guide fur-
ther hypothesis generation. This document focuses specifi-
cally on our technique for hypothesis evaluation.

2. Approach

We use a hierarchical shape description language to de-
scribe the shapes in a domain. In Figure 1, the arrow is
an example of acompound shape, i.e., one composed of
subshapes(labelled “Components”) fit together according
to constraints. A line is aprimitive shape—one that cannot
be decomposed further.

As the user draws, the system generates candidate interpre-
tations for the user’s strokes based on a rough estimate of
the low-level shapes and constraints in the drawing. For
example, if strokesa and b both look like lines, and are
roughly connected, the system might propose that they are
the head and shaft of an arrow. If strokea is significantly
longer than strokeb the system would propose the hypothe-
sis in whicha is the shaft, but would not propose a hypoth-
esis in whichb is the shaft.

Once hypotheses are generated, the system interprets how
well each describes the data. Our approach differs from
previous constraint satisfaction approaches (e.g. (Grimson,
1991)) for two reasons. First, our technique must be able
to evaluate partially filled hypotheses (e.g. an arrow with
no shaft) because we wish to interpret drawings as they de-
velop. Second, because sketches are noisy, we cannot set
a hard threshold on whether or not a constraint is satisfied.
For example, two lines that appear to connect to form a
corner of a square may not actually be connected, and the
same data may not appear connected in a different context.

Graphical models handle both of these issues. Missing
data can be treated as unobserved nodes in a Bayesian net-
work, while the system assesses likely interpretations for
the strokes that have been observed thus far. Furthermore,
the system’s belief in low-level shapes and constraints can
be influenced by both the stroke data and the context in
which those shapes or constraints appear.

Time-based graphical models (e.g. Dynamic Bayesian Net-
works) are not well-suited to our task because we must
model shapes based on two-dimensional constraints (e.g.
intersects) rather than on temporal constraints, and because
our models cannot simply unroll in time as data arrives
(we cannot necessarily predict drawing order). The net-
work’s fundamental structure must be changed to reflect
each new stroke. To allow for the change in structure,
we specify Bayesian network fragments that correspond to
shape and domain pattern descriptions (e.g. Figure 1). Our
fragment representation is similar to the Probabilistic Rela-
tional Models proposed in (Getoor et al., 1999).

As the recognition system produces interpretations for the
user’s strokes, new fragments are instantiated and linked
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C5: (< (angle head1 shaft) 80)
C6: (< (angle shaft head2) 80)
C7: (> (angle head1 shaft) 0)
C8: (> (angle shaft head2) 0))
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Figure 1.The description of the shape “arrow” and the corresponding Bayesian Network fragment.

together to form a complete Bayesian network. Note that
a particular fragment may be instantiated any number of
times, and each time it is instantiated it refers to a specific
hypothesis with a specific mapping from stokes to subcom-
ponents of the object. Nodes representing shapes and con-
straints are binary; their probability at any given time repre-
sents how strongly the system believes that interpretation.

For each primitive shape and constraint, we define a corre-
sponding feature that can be measured from a given stroke
or set of strokes and create a node to represent this vari-
able.1 For example, for lines, the observation feature is the
normalized squared error between the stroke and best-fit
line. Each primitive shape and constraint,Si, in the net-
work has a child node,Fi, for its corresponding feature.
By collecting low-level data, we have estimated the distri-
butionp(Fi|Si) for eachi. Data enters the network through
observations at the feature level.

3. Related Work

Others have used Bayesian networks for image interpre-
tation (Jepson & Mann, 1999; Frey & Jojic, 2000). Our
task differs in that sketches are highly stylized, so the prob-
lem of locating low-level shapes is lessened, allowing us to
use a more efficient hypothesis generation scheme. An ap-
proach to sketch interpretation by Shilmanet. al. takes an
approach similar to ours, relying on a Bayesian formulation
of the structure of the shapes to be recognized (Shilman
et al., 2002). Our work differs in the way the system parses
the user’s strokes.

4. Current Status and Future Work

We have applied an early implementation of our system to
the domain of mechanical engineering and obtained proof-
of-concept results. Our system is capable of using con-

1To increase conditional independence, constraints are calcu-
lated in such a way that their value is not dependent on the true
interpretation for a stroke, but instead is calculated from the stroke
data directly.

text to recover from low-level interpretation errors without
blindly trying all interpretations for each stroke. For exam-
ple, a stroke that does not appear to be a line in isolation
can be reinterpreted as a line if it is interpreted as the shaft
of an arrow, but this interpretation will be considered only
if there are other strokes in the vicinity that roughly meet
the constraints for the head of the arrow.

To perform inference in real time, our system system reg-
ularly prunes unlikely interpretations. As we expand the
system, we will experiment with the pruning threshold to
ensure that the system does not prune correct hypotheses.

We are currently expanding the system so that we can col-
lect more substantial performance results and test the sys-
tem with designers working on realistic tasks. In the longer
term, we will explore how to use our recognition system
to build a natural early-stage design tool. This exploration
will involve determining what type of feedback to display
to the user, the amount of error the user is willing to toler-
ate from the recognition system, and how the system should
allow the user to correct those errors.
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